Suppr超能文献

蛋白尿的机制与后果

Mechanisms and consequences of proteinuria.

作者信息

Kaysen G A, Myers B D, Couser W G, Rabkin R, Felts J M

出版信息

Lab Invest. 1986 May;54(5):479-98.

PMID:3517485
Abstract

The glomerulus is a complex structure containing a remarkable capillary bed which is freely permeable to water and solutes up to the size of inulin. Many small proteins are filtered, reabsorbed, and catabolized by the kidney; but most large proteins, such as albumin or immunoglobulins, are almost entirely excluded from the glomerular ultrafiltrate due to the charge-size permselectivity of the glomerular capillary basement membrane. These large proteins appear in the urine when diseases reduce the charge selectivity or result in the development of large pores in this membrane. The reabsorptive capacity of the renal tubules for these proteins is overwhelmed. Hypoalbuminemia results when increased synthetic and decreased catabolic rates of albumin fail to compensate for the urinary loss of the protein. The resulting decrease in serum oncotic pressure increases the flux of fluid out of systemic capillaries into the interstitial space, a process that increases lymphatic flow and returns the relatively protein-poor ultrafiltrate to the plasma compartment. Interstitial proteins are swept into the plasma by the increased lymphatic flow, leading to a depletion of the extravascular pool of albumin even more severe than the depletion of albumin in the plasma compartment. The rate of albumin synthesis is increased but not sufficiently to replace losses and restore the serum concentration to normal. The rate of albumin catabolism is decreased. This decrease from the normal catabolic rate is as important as the increased rate of albumin synthesis in maintenance of albumin homeostasis in nephrosis. Whereas the reduced serum oncotic pressure certainly contributes to edema formation, sodium retention may result from processes intrinsic to the kidney itself; and plasma volume may actually be expanded despite hypoalbuminemia. The hyperlipemia that occurs in nephrosis is due to a combined defect in lipoprotein metabolism: increased hepatic synthesis of VLDL and decreased removal of TG and highly atherogenic remnants of incompletely metabolized CMs. The defects in lipoprotein metabolism may in part be the end result of the urinary loss of highly negative-charged macromolecules of the mucopolysaccharide called orosomucoid, which carries with it heparan sulfate, and important cofactor for LPL.

摘要

肾小球是一个复杂的结构,包含一个非凡的毛细血管床,该毛细血管床对水和大小直至菊粉的溶质可自由通透。许多小蛋白质被肾脏滤过、重吸收和分解代谢;但大多数大蛋白质,如白蛋白或免疫球蛋白,由于肾小球毛细血管基底膜的电荷 - 大小选择性通透作用,几乎完全被排除在肾小球超滤液之外。当疾病降低电荷选择性或导致该膜出现大孔时,这些大蛋白质就会出现在尿液中。肾小管对这些蛋白质的重吸收能力不堪重负。当白蛋白合成增加和分解代谢率降低无法弥补蛋白质的尿流失时,就会导致低白蛋白血症。由此导致的血清胶体渗透压降低会增加液体从全身毛细血管流入间质间隙的通量,这一过程会增加淋巴液流动,并将相对蛋白质含量低的超滤液返回血浆 compartment。增加的淋巴液流动将间质蛋白质冲入血浆,导致血管外白蛋白池的消耗比血浆 compartment 中白蛋白的消耗更为严重。白蛋白合成速率增加,但不足以弥补损失并将血清浓度恢复正常。白蛋白分解代谢率降低。在维持肾病患者白蛋白内环境稳定方面,这种从正常分解代谢率的降低与白蛋白合成速率的增加同样重要。虽然降低的血清胶体渗透压肯定有助于水肿形成,但钠潴留可能源于肾脏本身的内在过程;尽管存在低白蛋白血症,血浆量实际上可能会增加。肾病中出现的高脂血症是由于脂蛋白代谢的联合缺陷:肝脏极低密度脂蛋白(VLDL)合成增加,以及甘油三酯(TG)和未完全代谢的乳糜微粒(CM)的高致动脉粥样硬化残余物清除减少。脂蛋白代谢缺陷可能部分是由于称为类粘蛋白的带高度负电荷的粘多糖大分子的尿流失所致,它携带硫酸乙酰肝素,而硫酸乙酰肝素是脂蛋白脂肪酶(LPL)的重要辅助因子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验