Qin Zengming, Song Yu, Yang Duo, Zhang Ming-Yue, Shi Hua-Yu, Li Cuicui, Sun Xiaoqi, Liu Xiao-Xia
Department of Chemistry, Northeastern University, Shenyang 110819, China.
Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110819, China.
ACS Appl Mater Interfaces. 2022 Mar 2;14(8):10526-10534. doi: 10.1021/acsami.1c22674. Epub 2022 Feb 17.
Aqueous rechargeable Zn-manganese dioxide (Zn-MnO) hybrid batteries based on dissolution-deposition mechanisms exhibit ultrahigh capacities and energy densities due to the two-electron transformation between MnO/Mn. However, the reported Zn-MnO hybrid batteries usually use strongly acidic and/or alkaline electrolytes, which may lead to environmental hazards and corrosion issues of the Zn anodes. Herein, we propose a new Zn-MnO hybrid battery by adding Al into the sulfate-based electrolyte. The hybrid battery undergoes reversible MnO/Mn transformation and exhibits good electrochemical performances, such as a high discharge capacity of 564.7 mAh g with a discharge plateau of 1.65 V, an energy density of 520.8 Wh kg, and good cycle life without capacity decay upon 2000 cycles. Experimental results and theoretical calculation suggest that the aquo Al with Brønsted weak acid nature can act as the proton-donor reservoir to maintain the electrolyte acidity near the electrode surface and prevent the formation of Zn(OH)(SO)·0.5HO during discharging. In addition, Al doping during charging introduces oxygen vacancies in the oxide structure and weakens the Mn-O bond, which facilitates the dissolution reaction during discharge. The mechanistic investigation discloses the important role of Al in the electrolyte, providing a new fundamental understanding of the promising aqueous Zn-MnO batteries.
基于溶解-沉积机制的水系可充电锌-二氧化锰(Zn-MnO)混合电池,由于MnO/Mn之间的双电子转变,展现出超高的容量和能量密度。然而,已报道的Zn-MnO混合电池通常使用强酸性和/或碱性电解质,这可能导致环境危害以及锌负极的腐蚀问题。在此,我们通过向硫酸盐基电解质中添加铝,提出了一种新型的Zn-MnO混合电池。该混合电池经历可逆的MnO/Mn转变,并展现出良好的电化学性能,例如564.7 mAh g的高放电容量、1.65 V的放电平台、520.8 Wh kg的能量密度,以及在2000次循环后无容量衰减的良好循环寿命。实验结果和理论计算表明,具有布朗斯特弱酸性质的水合铝可作为质子供体库,以维持电极表面附近的电解质酸度,并防止放电过程中形成Zn(OH)(SO)·0.5HO。此外,充电过程中的铝掺杂在氧化物结构中引入氧空位并削弱Mn-O键,这有利于放电过程中的溶解反应。机理研究揭示了铝在电解质中的重要作用,为前景广阔的水系Zn-MnO电池提供了新的基础认识。