Moon Hyeonseok, Ha Kwang-Ho, Park Yuwon, Lee Jungho, Kwon Mi-Sook, Lim Jungwoo, Lee Min-Ho, Kim Dong-Hyun, Choi Jin H, Choi Jeong-Hee, Lee Kyu Tae
School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea.
Next Generation Battery Research Center Korea Electrotechnology Research Institute Bulmosan-ro 10beon-gil, Seongsan-gu Changwon-si Gyeongsangnam-do 51543 Republic of Korea.
Adv Sci (Weinh). 2021 Feb 1;8(6):2003714. doi: 10.1002/advs.202003714. eCollection 2021 Mar.
Mild-acid Zn-MnO batteries have been considered a promising alternative to Li-ion batteries for large scale energy storage systems because of their high safety. There have been remarkable improvements in the electrochemical performance of Zn-MnO batteries, although the reaction mechanism of the MnO cathode is not fully understood and still remains controversial. Herein, the reversible dissolution/deposition (Mn/Mn) mechanism of the MnO cathode through a 2e reaction is directly evidenced using solution-based analyses, including electron spin resonance spectroscopy and the designed electrochemical experiments. Solid MnO (Mn) is reduced into Mn (aq) dissolved in the electrolyte during discharge. Mn ions are then deposited on the cathode surface in the form of the mixture of the poorly crystalline Zn-containing MnO compounds through two-step reactions during charge. Moreover, the failure mechanism of mild-acid Zn-MnO batteries is elucidated in terms of the loss of electrochemically active Mn. In this regard, a porous carbon interlayer is introduced to entrap the dissolved Mn ions. The carbon interlayer suppresses the loss of Mn during cycling, resulting in the excellent electrochemical performance of pouch-type Zn-MnO cells, such as negligible capacity fading over 100 cycles. These findings provide fundamental insights into strategies to improve the electrochemical performance of aqueous Zn-MnO batteries.
由于其高安全性,温和酸性锌锰电池被认为是大规模储能系统中锂离子电池的一种有前途的替代品。尽管MnO阴极的反应机制尚未完全理解且仍存在争议,但锌锰电池的电化学性能已有显著改善。在此,通过基于溶液的分析,包括电子自旋共振光谱和设计的电化学实验,直接证明了MnO阴极通过2e反应的可逆溶解/沉积(Mn/Mn)机制。在放电过程中,固态MnO(Mn)被还原为溶解在电解质中的Mn(aq)。然后,在充电过程中,Mn离子通过两步反应以含锌MnO化合物的混合形式沉积在阴极表面。此外,从电化学活性Mn的损失方面阐明了温和酸性锌锰电池的失效机制。在这方面,引入了多孔碳中间层以捕获溶解的Mn离子。碳中间层抑制了循环过程中Mn的损失,从而使软包型锌锰电池具有优异的电化学性能,例如在100次循环中容量衰减可忽略不计。这些发现为改善水系锌锰电池电化学性能的策略提供了基本见解。