Suppr超能文献

癌症晚期门诊患者的镇痛药依从性。

Adherence to Analgesics Among Outpatients Seriously Ill With Cancer.

机构信息

Author Affiliations: Department of Nursing, Concordia College (Dr Stapleton), Moorhead, Minnesota; Department of Biobehavioral Nursing Science, College of Nursing, University of Florida (Drs Dyal, Ezenwa, Yao, and Wilkie), Gainesville; and Department of Biomedical and Health Information Sciences, College of Applied Health Sciences (Dr Boyd), and Department of Biobehavioral Nursing Science, College of Nursing (Dr Suarez), University of Illinois Chicago.

出版信息

Cancer Nurs. 2022;45(5):337-344. doi: 10.1097/NCC.0000000000001064. Epub 2022 Feb 16.

Abstract

BACKGROUND

Adherence to prescribed analgesics for patients seriously ill with cancer pain is essential for comfort.

OBJECTIVE

The objective of this study was to determine the analgesic adherence in seriously ill patients with cancer and its association with clinical and demographic characteristics.

METHODS

This is a cross-sectional study. At home, 202 patients with cancer (mean age, 59.9 ± 14.2 years; 58% female, 48% Black, and 42% White) admitted to hospice/palliative care completed measures on a pen tablet: PAIN Report It, Symptom Distress Scale, mood state item, Pittsburgh Sleep Quality Index item, and Pain Management Index.

RESULTS

The mean current pain intensity was 4.4 ± 2.9, and the mean worst pain in the past 24 hours was 7.2 ± 2.7. More than one-half of participants were not satisfied with their pain level (54%) and reported their pain was more intense than they wanted to tolerate for 18 hours or longer in the last 24 hours (51%). Only 12% were not prescribed analgesics appropriate for the intensity of their pain. Adherence rates were variable: nonsteroidal anti-inflammatory drugs (0.63 ± 0.50), adjuvants (0.93 ± 0.50), World Health Organization step 2 opioids (0.63 ± 0.49), and step 3 opioids (0.80 ± 0.40). With setting/clinical/demographic variables in the model, dose intervals of less than 8 hours were associated with less adherence ( P < .001).

CONCLUSION

Little progress has been made toward improving analgesic adherence even in settings providing analgesics without cost. Research focused on targeting analgesic dose intervals and barriers not related to cost is needed.

IMPLICATION FOR PRACTICE

Dose intervals of 8 hours or longer were significantly associated with higher adherence rates; therefore, use of longer-acting analgesics is one strategy to improve pain control at the end of life.

摘要

背景

癌症疼痛患者遵医嘱使用镇痛剂对缓解疼痛至关重要。

目的

本研究旨在确定癌症重症患者的镇痛依从性及其与临床和人口统计学特征的关系。

方法

这是一项横断面研究。在家中,202 名癌症患者(平均年龄 59.9 ± 14.2 岁;58%为女性,48%为黑人,42%为白人)使用平板电脑完成了以下评估:PAIN Report It、症状困扰量表、情绪状态项目、匹兹堡睡眠质量指数项目和疼痛管理指数。

结果

患者当前平均疼痛强度为 4.4 ± 2.9,过去 24 小时内平均最剧烈疼痛为 7.2 ± 2.7。超过一半的参与者对自己的疼痛程度不满意(54%),并报告在过去 24 小时内,有 18 小时或更长时间的疼痛强度超过他们能够忍受的程度(51%)。只有 12%的患者未开具与疼痛强度相匹配的镇痛剂。药物依从性差异较大:非甾体类抗炎药(0.63 ± 0.50)、辅助药物(0.93 ± 0.50)、世界卫生组织第 2 阶梯阿片类药物(0.63 ± 0.49)和第 3 阶梯阿片类药物(0.80 ± 0.40)。在模型中纳入设置/临床/人口统计学变量后,发现剂量间隔小于 8 小时与较低的药物依从性相关(P<0.001)。

结论

即使在提供免费镇痛剂的环境中,改善镇痛药物依从性也几乎没有进展。需要针对镇痛剂剂量间隔和与成本无关的障碍进行研究。

实践意义

剂量间隔 8 小时或更长时间与更高的药物依从性显著相关;因此,使用长效镇痛剂是改善生命末期疼痛控制的一种策略。

相似文献

1
Adherence to Analgesics Among Outpatients Seriously Ill With Cancer.癌症晚期门诊患者的镇痛药依从性。
Cancer Nurs. 2022;45(5):337-344. doi: 10.1097/NCC.0000000000001064. Epub 2022 Feb 16.
3
Prescribed opioids adherence among Taiwanese oncology outpatients.台湾肿瘤门诊患者对处方阿片类药物的依从性。
Pain Manag Nurs. 2013 Sep;14(3):155-60. doi: 10.1016/j.pmn.2011.02.001. Epub 2011 Apr 17.
4
Opioid and adjuvant analgesics: compared and contrasted.阿片类和辅助镇痛药:比较与对比
Am J Hosp Palliat Care. 2011 Aug;28(5):378-83. doi: 10.1177/1049909111410298. Epub 2011 May 26.
9

本文引用的文献

4
Factors Related to Adherence to Opioids in Black Patients With Cancer Pain.与黑人癌症疼痛患者阿片类药物依从性相关的因素。
J Pain Symptom Manage. 2019 Jan;57(1):28-36. doi: 10.1016/j.jpainsymman.2018.10.491. Epub 2018 Oct 12.
9
Ingestible Sensors.可摄入传感器。
ACS Sens. 2017 Apr 28;2(4):468-483. doi: 10.1021/acssensors.7b00045. Epub 2017 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验