Chagnet Nicolas, Chapman Shira, de Boer Jan, Zukowski Claire
Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
Department of Physics, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
Phys Rev Lett. 2022 Feb 4;128(5):051601. doi: 10.1103/PhysRevLett.128.051601.
We study circuit complexity for conformal field theory states in an arbitrary number of dimensions. Our circuits start from a primary state and move along a unitary representation of the Lorentzian conformal group. Different choices of distance functions can be understood in terms of the geometry of coadjoint orbits of the conformal group. We explicitly relate our circuits to timelike geodesics in anti-de Sitter space and the complexity metric to distances between these geodesics. We extend our method to circuits in other symmetry groups using a group theoretic generalization of the notion of coherent states.
我们研究任意维度共形场论态的电路复杂性。我们的电路从一个原初态出发,沿着洛伦兹共形群的幺正表示移动。距离函数的不同选择可以根据共形群余伴随轨道的几何来理解。我们明确地将我们的电路与反德西特空间中的类时测地线联系起来,并将复杂性度量与这些测地线之间的距离联系起来。我们使用相干态概念的群论推广,将我们的方法扩展到其他对称群中的电路。