Caputa Paweł, Magan Javier M
Center for Gravitational Physics, Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
Instituto Balseiro, Centro Atomico Bariloche S. C. de Bariloche, Rio Negro, R8402AGP, Argentina.
Phys Rev Lett. 2019 Jun 14;122(23):231302. doi: 10.1103/PhysRevLett.122.231302.
We formulate Nielsen's geometric approach to circuit complexity in the context of two-dimensional conformal field theories, where series of conformal transformations are interpreted as "unitary circuits" built from energy-momentum tensor gates. We show that the complexity functional in this setup can be written as the Polyakov action of two-dimensional gravity or, equivalently, as the geometric action on the coadjoint orbits of the Virasoro group. This way, we argue that gravity sets the rules for optimal quantum computation in conformal field theories.
我们在二维共形场论的背景下阐述了尼尔森关于电路复杂性的几何方法,其中共形变换序列被解释为由能量 - 动量张量门构建的“酉电路”。我们表明,在此设置下的复杂性泛函可以写成二维引力的波利雅科夫作用量,或者等效地,写成维拉索罗群余伴随轨道上的几何作用量。通过这种方式,我们认为引力为共形场论中的最优量子计算设定了规则。