Department of Materials Science and Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States.
J Am Chem Soc. 2019 Aug 21;141(33):13234-13243. doi: 10.1021/jacs.9b06695. Epub 2019 Aug 8.
Nanocomposite tectons (NCTs) are a recently developed building block for polymer-nanoparticle composite synthesis, consisting of nanoparticle cores functionalized with dense monolayers of polymer chains that terminate in supramolecular recognition groups capable of linking NCTs into hierarchical structures. In principle, the use of molecular binding to guide particle assembly allows NCTs to be highly modular in design, with independent control over the composition of the particle core and polymer brush. However, a major challenge to realize an array of compositionally and structurally varied NCT-based materials is the development of different supramolecular bonding interactions to control NCT assembly, as well as an understanding of how the organization of multiple supramolecular groups around a nanoparticle scaffold affects their collective binding interactions. Here, we present a suite of rationally designed NCT systems, where multiple types of supramolecular interactions (hydrogen bonding, metal complexation, and dynamic covalent bond formation) are used to tune NCT assembly as a function of multiple external stimuli including temperature, small molecules, pH, and light. Furthermore, the incorporation of multiple orthogonal supramolecular chemistries in a single NCT system makes it possible to dictate the morphologies of the assembled NCTs in a pathway-dependent fashion. Finally, multistimuli responsive NCTs enable the modification of composite properties by postassembly functionalization, where NCTs linked by covalent bonds with significantly enhanced stability are obtained in a fast and efficient manner. The designs presented here therefore provide major advancement for the field of composite synthesis by establishing a framework for synthesizing hierarchically ordered composites capable of complicated assembly behaviors.
纳米复合结构单元(NCTs)是一种新兴的聚合物-纳米粒子复合材料合成构建模块,由纳米颗粒内核组成,内核表面通过密集的聚合物链单层官能化,聚合物链末端带有超分子识别基团,能够将 NCTs 链接成具有层次结构的复杂组装体。原则上,利用分子键合来引导粒子组装,可以使 NCTs 在设计上具有高度的模块化,能够独立控制颗粒内核和聚合物刷的组成。然而,实现具有不同组成和结构的 NCT 基材料的阵列面临的一个主要挑战是开发不同的超分子键合相互作用来控制 NCT 组装,以及了解围绕纳米颗粒支架组织的多个超分子基团如何影响它们的集体结合相互作用。在这里,我们提出了一系列合理设计的 NCT 体系,其中多种类型的超分子相互作用(氢键、金属络合和动态共价键形成)被用于调节 NCT 组装,作为多种外部刺激(包括温度、小分子、pH 值和光)的函数。此外,在单个 NCT 系统中整合多种正交超分子化学,可以以依赖于途径的方式控制组装 NCT 的形态。最后,多刺激响应的 NCT 可以通过后组装功能化来修饰复合材料的性能,其中通过共价键连接的 NCT 以快速有效的方式获得具有显著增强稳定性的复合材料。因此,这里提出的设计为复合材料合成领域提供了重大进展,为合成具有复杂组装行为的分级有序复合材料建立了框架。