Université Paris-Saclay, Inria, CEA, Palaiseau, France; InteraXon Inc., Toronto, Canada.
InteraXon Inc., Toronto, Canada.
Neuroimage. 2022 May 1;251:118994. doi: 10.1016/j.neuroimage.2022.118994. Epub 2022 Feb 16.
Building machine learning models using EEG recorded outside of the laboratory setting requires methods robust to noisy data and randomly missing channels. This need is particularly great when working with sparse EEG montages (1-6 channels), often encountered in consumer-grade or mobile EEG devices. Neither classical machine learning models nor deep neural networks trained end-to-end on EEG are typically designed or tested for robustness to corruption, and especially to randomly missing channels. While some studies have proposed strategies for using data with missing channels, these approaches are not practical when sparse montages are used and computing power is limited (e.g., wearables, cell phones). To tackle this problem, we propose dynamic spatial filtering (DSF), a multi-head attention module that can be plugged in before the first layer of a neural network to handle missing EEG channels by learning to focus on good channels and to ignore bad ones. We tested DSF on public EEG data encompassing ∼4000 recordings with simulated channel corruption and on a private dataset of ∼100 at-home recordings of mobile EEG with natural corruption. Our proposed approach achieves the same performance as baseline models when no noise is applied, but outperforms baselines by as much as 29.4% accuracy when significant channel corruption is present. Moreover, DSF outputs are interpretable, making it possible to monitor the effective channel importance in real-time. This approach has the potential to enable the analysis of EEG in challenging settings where channel corruption hampers the reading of brain signals.
在实验室环境之外使用 EEG 记录构建机器学习模型需要具有抗噪数据和随机缺失通道能力的方法。当使用稀疏 EEG 导联(1-6 个通道)时,这种需求尤其大,稀疏 EEG 导联通常在消费级或移动 EEG 设备中遇到。经典的机器学习模型和端到端训练的深度神经网络通常都没有针对损坏,特别是随机缺失通道进行设计或测试。虽然有些研究提出了使用缺失通道数据的策略,但当使用稀疏导联且计算能力有限时(例如,可穿戴设备、手机),这些方法并不实用。为了解决这个问题,我们提出了动态空间滤波(DSF),这是一种多头注意力模块,可以在神经网络的第一层之前插入,通过学习关注良好的通道并忽略不良的通道来处理缺失的 EEG 通道。我们在包含约 4000 个记录的公共 EEG 数据上测试了 DSF,这些数据具有模拟的通道损坏,并且在具有自然损坏的约 100 个家庭移动 EEG 记录的私有数据集上进行了测试。当没有噪声应用时,我们提出的方法与基线模型的性能相同,但当存在显著的通道损坏时,其表现优于基线模型,准确率高达 29.4%。此外,DSF 的输出是可解释的,这使得实时监测有效通道的重要性成为可能。这种方法有可能使 EEG 在通道损坏阻碍脑信号读取的具有挑战性的环境中进行分析成为可能。