Iran University of Science and Technology, Tehran, Iran.
Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran.
Sci Rep. 2021 Jun 8;11(1):12064. doi: 10.1038/s41598-021-90029-5.
This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-plasticity algorithm. The models capture informative personal patterns of interaction between EEG channels, contrary to single EEG signal modeling methods or to spike-based approaches which do not use personal MRI data to pre-structure a model. The proposed models can not only learn and model accurately measured EEG data, but they can also predict signals at 3D model locations that correspond to non-monitored brain areas, e.g. other EEG channels, from where data has not been collected. This is the first study in this respect. As an illustration of the method, personalized MRI-SNN models are created and tested on EEG data from two subjects. The models result in better prediction accuracy and a better understanding of the personalized EEG signals than traditional methods due to the MRI and EEG information integration. The models are interpretable and facilitate a better understanding of related brain processes. This approach can be applied for personalized modeling, analysis, and prediction of EEG signals across brain studies such as the study and prediction of epilepsy, peri-perceptual brain activities, brain-computer interfaces, and others.
本文提出了一种新颖的方法和算法,用于设计 MRI 结构个性化三维尖峰神经网络模型 (MRI-SNN),以更好地分析、建模和预测 EEG 信号。它提出了一种新颖的梯度下降学习算法,与尖峰时间依赖性可塑性算法集成。这些模型捕捉到 EEG 通道之间具有信息性的个人交互模式,与仅对单个 EEG 信号进行建模的方法或不使用个人 MRI 数据预先构建模型的基于尖峰的方法形成对比。所提出的模型不仅可以准确地学习和建模测量到的 EEG 数据,还可以预测与未监测到的大脑区域(例如,未采集数据的其他 EEG 通道)对应的 3D 模型位置的信号。这是在这方面的首次研究。作为该方法的说明,针对来自两个受试者的 EEG 数据创建并测试了个性化 MRI-SNN 模型。与传统方法相比,由于 MRI 和 EEG 信息的集成,这些模型导致了更好的预测准确性和对个性化 EEG 信号的更好理解。这些模型具有可解释性,有助于更好地理解相关的大脑过程。这种方法可以应用于个性化建模、分析和预测 EEG 信号,涵盖脑研究,如癫痫、感知前脑活动、脑机接口等的研究和预测。