Suppr超能文献

听觉神经突触活动依赖性变化的时程揭示了多种潜在的细胞机制。

Time Course of Activity-Dependent Changes in Auditory Nerve Synapses Reveals Multiple Underlying Cellular Mechanisms.

机构信息

Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260.

Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260

出版信息

J Neurosci. 2022 Mar 23;42(12):2492-2502. doi: 10.1523/JNEUROSCI.1583-21.2022. Epub 2022 Feb 18.

Abstract

Abnormal levels of acoustic activity can result in hearing problems such as tinnitus and language processing disorders, but the underlying cellular and synaptic changes triggered by abnormal activity are not well understood. To address this issue, we studied the time course of activity-dependent changes that occur at auditory nerve synapses in mice of both sexes after noise exposure and conductive hearing loss. We found that EPSC amplitude and synaptic depression decreased within 2 d of noise exposure through a decrease in the probability of vesicle release (). This was followed by a gradual increase in EPSC amplitude through a larger pool of releasable vesicles (). Occlusion of the ear canal led to a rapid decrease in EPSC amplitude through a decrease in , which was followed by an increase in EPSC amplitude and synaptic depression through an increase in After returning to normal sound levels, synaptic depression recovered to control levels within 1-2 d. However, repeated exposure to noise for as little as 8 h/d caused synaptic changes after 7 d, suggesting recovery did not fully offset changes. Thus, there appear to be three activity-dependent mechanisms in auditory nerve synapses-bidirectional changes in in 1-2 d, slower bidirectional changes in through synaptic growth or retraction, and rapid downregulation of with low activity. The dynamic changes indicate that multiple mechanisms are present to fine-tune synaptic fidelity across different acoustic conditions in a simple relay. Hearing impairments can arise from exposure to noise or conductive hearing loss. This appears to result from changes in the brain, but the mechanisms are not well understood. We study this issue by studying the synapses made by auditory nerve fibers called endbulbs of Held. These synapses undergo bidirectional changes in size and release probability of neurotransmitter in response to increased or decreased activity. Here, we made a close examination of how quickly these synaptic characteristics change, which indicates there are at least three cellular mechanisms underlying changes. Furthermore, repeated exposure to brief periods of noise can produce cumulative effects. These changes could significantly affect hearing, especially because they occur at the start of the central auditory pathway.

摘要

异常的声活动水平可能导致听力问题,如耳鸣和语言处理障碍,但异常活动引发的潜在细胞和突触变化还没有被很好地理解。为了解决这个问题,我们研究了雄性和雌性小鼠在噪声暴露和传导性听力损失后听觉神经突触中发生的活性依赖性变化的时程。我们发现,EPSC 幅度和突触抑制在噪声暴露后 2 天内通过降低囊泡释放的概率()而降低。随后,通过更大的可释放囊泡池()EPSC 幅度逐渐增加。阻塞耳道会导致 EPSC 幅度通过降低而迅速降低,这随后导致 EPSC 幅度和突触抑制通过增加而增加。恢复正常声音水平后,突触抑制在 1-2 天内恢复到对照水平。然而,即使每天仅暴露于噪声 8 小时,也会在 7 天后引起突触变化,这表明恢复并没有完全抵消变化。因此,听觉神经突触中似乎存在三种活性依赖性机制-在 1-2 天内 发生双向变化,通过突触生长或回缩导致较慢的双向变化,以及在低活动时快速下调 。动态变化表明,在简单的中继中,存在多种机制来微调不同声条件下的突触保真度。听力损伤可能是由于暴露于噪声或传导性听力损失引起的。这似乎是由于大脑的变化引起的,但机制尚不清楚。我们通过研究听觉神经纤维末端的突触来研究这个问题,这些突触称为 Held 终球。这些突触的大小和神经递质释放概率会发生双向变化,以响应增加或减少的活动。在这里,我们仔细检查了这些突触特征变化的速度,这表明至少有三种细胞机制是潜在的原因。此外,反复暴露于短暂的噪声中会产生累积效应。这些变化可能会对听力产生重大影响,特别是因为它们发生在中枢听觉通路的起始处。

相似文献

2
Induction of Activity-Dependent Plasticity at Auditory Nerve Synapses.诱导听觉神经突触的活动依赖性可塑性。
J Neurosci. 2022 Aug 10;42(32):6211-6220. doi: 10.1523/JNEUROSCI.0666-22.2022. Epub 2022 Jul 5.

本文引用的文献

2
Sleep Promotes Downward Firing Rate Homeostasis.睡眠促进向下放电率的稳态。
Neuron. 2021 Feb 3;109(3):530-544.e6. doi: 10.1016/j.neuron.2020.11.001. Epub 2020 Nov 23.
3
Auditory brainstem development and plasticity.听觉脑干发育与可塑性。
Curr Opin Physiol. 2020 Dec;18:7-10. doi: 10.1016/j.cophys.2020.07.002. Epub 2020 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验