Centre for AgriBioscience, Agriculture Victoria, 5 Ring Road, Bundoora, AgriBioVIC, 3083, Australia.
CRV Ambreed, PO Box 176, Hamilton, New Zealand.
Genet Sel Evol. 2022 Feb 19;54(1):15. doi: 10.1186/s12711-022-00707-9.
Urinary nitrogen leakage is an environmental concern in dairy cattle. Selection for reduced urinary nitrogen leakage may be done using indicator traits such as milk urea nitrogen (MUN). The result of a previous study indicated that the genetic correlation between MUN in Australia (AUS) and MUN in New Zealand (NZL) was only low to moderate (between 0.14 and 0.58). In this context, an alternative is to select sequence variants based on genome-wide association studies (GWAS) with a view to improve genomic prediction accuracies. A GWAS can also be used to detect quantitative trait loci (QTL) associated with MUN. Therefore, our objectives were to perform within-country GWAS and a meta-GWAS for MUN using records from up to 33,873 dairy cows and imputed whole-genome sequence data, to compare QTL detected in the GWAS for MUN in AUS and NZL, and to use sequence variants selected from the meta-GWAS to improve the prediction accuracy for MUN based on a joint AUS-NZL reference set.
Using the meta-GWAS, we detected 14 QTL for MUN, located on chromosomes 1, 6, 11, 14, 19, 22, 26 and the X chromosome. The three most significant QTL encompassed the casein genes on chromosome 6, PAEP on chromosome 11 and DGAT1 on chromosome 14. We selected 50,000 sequence variants that had the same direction of effect for MUN in AUS and MUN in NZL and that were most significant in the meta-analysis for the GWAS. The selected sequence variants yielded a genetic correlation between MUN in AUS and MUN in NZL of 0.95 and substantially increased prediction accuracy in both countries.
Our results demonstrate how the sharing of data between two countries can increase the power of a GWAS and increase the accuracy of genomic prediction using a multi-country reference population and sequence variants selected based on a meta-GWAS.
尿氮泄漏是奶牛养殖业的一个环境问题。可以使用牛奶尿素氮(MUN)等指示性状来选择减少尿氮泄漏的品种。先前的一项研究结果表明,澳大利亚(AUS)和新西兰(NZL)的 MUN 之间的遗传相关性仅为低到中度(在 0.14 到 0.58 之间)。在这种情况下,可以选择基于全基因组关联研究(GWAS)的序列变异,以提高基因组预测的准确性。GWAS 也可用于检测与 MUN 相关的数量性状基因座(QTL)。因此,我们的目标是使用来自多达 33873 头奶牛的记录和推断的全基因组序列数据,对 MUN 进行国内 GWAS 和荟萃 GWAS,比较 AUS 和 NZL 的 MUN GWAS 中检测到的 QTL,并使用荟萃 GWAS 中选择的序列变异来提高基于 AUS-NZL 联合参考组的 MUN 预测准确性。
使用荟萃 GWAS,我们检测到 14 个与 MUN 相关的 QTL,位于 1、6、11、14、19、22、26 和 X 染色体上。三个最重要的 QTL 包括 6 号染色体上的酪蛋白基因、11 号染色体上的 PAEP 和 14 号染色体上的 DGAT1。我们选择了 50000 个在 AUS 和 NZL 的 MUN 中具有相同效应方向的序列变异,并且在荟萃分析中对 GWAS 最显著。选择的序列变异使 AUS 和 NZL 的 MUN 之间的遗传相关性达到 0.95,并在两个国家都显著提高了基因组预测的准确性。
我们的结果表明,两个国家之间的数据共享如何增加 GWAS 的效力,并使用多国参考群体和基于荟萃 GWAS 选择的序列变异来提高基因组预测的准确性。