文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

骨钙素抑制血管钙化中平滑肌细胞成骨样转变。

Osteomodulin attenuates smooth muscle cell osteogenic transition in vascular calcification.

机构信息

Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden.

Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.

出版信息

Clin Transl Med. 2022 Feb;12(2):e682. doi: 10.1002/ctm2.682.


DOI:10.1002/ctm2.682
PMID:35184400
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8858609/
Abstract

RATIONALE: Vascular calcification is a prominent feature of late-stage diabetes, renal and cardiovascular disease (CVD), and has been linked to adverse events. Recent studies in patients reported that plasma levels of osteomodulin (OMD), a proteoglycan involved in bone mineralisation, associate with diabetes and CVD. We hypothesised that OMD could be implicated in these diseases via vascular calcification as a common underlying factor and aimed to investigate its role in this context. METHODS AND RESULTS: In patients with chronic kidney disease, plasma OMD levels correlated with markers of inflammation and bone turnover, with the protein present in calcified arterial media. Plasma OMD also associated with cardiac calcification and the protein was detected in calcified valve leaflets by immunohistochemistry. In patients with carotid atherosclerosis, circulating OMD was increased in association with plaque calcification as assessed by computed tomography. Transcriptomic and proteomic data showed that OMD was upregulated in atherosclerotic compared to control arteries, particularly in calcified plaques, where OMD expression correlated positively with markers of smooth muscle cells (SMCs), osteoblasts and glycoproteins. Immunostaining confirmed that OMD was abundantly present in calcified plaques, localised to extracellular matrix and regions rich in α-SMA cells. In vivo, OMD was enriched in SMCs around calcified nodules in aortic media of nephrectomised rats and in plaques from ApoE mice on warfarin. In vitro experiments revealed that OMD mRNA was upregulated in SMCs stimulated with IFNγ, BMP2, TGFβ1, phosphate and β-glycerophosphate, and by administration of recombinant human OMD protein (rhOMD). Mechanistically, addition of rhOMD repressed the calcification process of SMCs treated with phosphate by maintaining their contractile phenotype along with enriched matrix organisation, thereby attenuating SMC osteoblastic transformation. Mechanistically, the role of OMD is exerted likely through its link with SMAD3 and TGFB1 signalling, and interplay with BMP2 in vascular tissues. CONCLUSION: We report a consistent association of both circulating and tissue OMD levels with cardiovascular calcification, highlighting the potential of OMD as a clinical biomarker. OMD was localised in medial and intimal α-SMA regions of calcified cardiovascular tissues, induced by pro-inflammatory and pro-osteogenic stimuli, while the presence of OMD in extracellular environment attenuated SMC calcification.

摘要

理由:血管钙化是晚期糖尿病、肾脏和心血管疾病(CVD)的一个显著特征,并与不良事件有关。最近在患者中的研究报告称,参与骨矿化的蛋白聚糖骨调节素(OMD)的血浆水平与糖尿病和 CVD 相关。我们假设 OMD 可能通过血管钙化作为共同的潜在因素而与这些疾病有关,并旨在研究其在这种情况下的作用。

方法和结果:在慢性肾脏病患者中,血浆 OMD 水平与炎症和骨转换标志物相关,该蛋白存在于钙化的动脉中膜。血浆 OMD 还与心脏钙化相关,免疫组化显示该蛋白存在于钙化的瓣膜小叶中。在颈动脉粥样硬化患者中,通过计算机断层扫描评估斑块钙化时,循环 OMD 增加。转录组和蛋白质组学数据显示,与对照动脉相比,动脉粥样硬化中 OMD 上调,尤其是在钙化斑块中,其中 OMD 表达与平滑肌细胞(SMCs)、成骨细胞和糖蛋白的标志物呈正相关。免疫染色证实 OMD 在富含 α-SMA 细胞的细胞外基质和富含细胞的区域中大量存在于钙化斑块中。在体内,OMD 在肾切除大鼠主动脉中膜钙化结节周围的 SMC 中和 ApoE 小鼠给予华法林的斑块中丰富。体外实验显示,IFNγ、BMP2、TGFβ1、磷酸盐和 β-甘油磷酸刺激 SMC 后,OMD mRNA 上调,并通过给予重组人 OMD 蛋白(rhOMD)。机制上,添加 rhOMD 通过维持其收缩表型和富含基质的组织来抑制用磷酸盐处理的 SMC 的钙化过程,从而减弱 SMC 成骨转化。机制上,OMD 的作用可能是通过其与 SMAD3 和 TGFB1 信号的联系以及与血管组织中 BMP2 的相互作用来发挥的。

结论:我们报告了循环和组织 OMD 水平与心血管钙化的一致关联,突出了 OMD 作为临床生物标志物的潜力。OMD 定位于钙化心血管组织的中膜和内膜 α-SMA 区域,由促炎和促成骨刺激诱导,而 OMD 存在于细胞外环境中可减弱 SMC 钙化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/a9530bb60a35/CTM2-12-e682-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/066f09e66b6f/CTM2-12-e682-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/2d498134f1d3/CTM2-12-e682-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/50523ba75fd8/CTM2-12-e682-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/8c7ad02424b6/CTM2-12-e682-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/1cfdc5d68667/CTM2-12-e682-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/054114bb1981/CTM2-12-e682-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/5e8f2bdba3f5/CTM2-12-e682-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/a9530bb60a35/CTM2-12-e682-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/066f09e66b6f/CTM2-12-e682-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/2d498134f1d3/CTM2-12-e682-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/50523ba75fd8/CTM2-12-e682-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/8c7ad02424b6/CTM2-12-e682-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/1cfdc5d68667/CTM2-12-e682-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/054114bb1981/CTM2-12-e682-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/5e8f2bdba3f5/CTM2-12-e682-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/8858609/a9530bb60a35/CTM2-12-e682-g001.jpg

相似文献

[1]
Osteomodulin attenuates smooth muscle cell osteogenic transition in vascular calcification.

Clin Transl Med. 2022-2

[2]
Osteomodulin Gene Expression Is Associated With Plaque Calcification, Stability, and Fewer Cardiovascular Events in the CPIP Cohort.

Stroke. 2022-3

[3]
Proteoglycan 4 Modulates Osteogenic Smooth Muscle Cell Differentiation during Vascular Remodeling and Intimal Calcification.

Cells. 2021-5-21

[4]
Correlation of computed tomography with carotid plaque transcriptomes associates calcification with lesion-stabilization.

Atherosclerosis. 2019-5-11

[5]
Osteomodulin positively regulates osteogenesis through interaction with BMP2.

Cell Death Dis. 2021-2-1

[6]
Mast cells participate in smooth muscle cell reprogramming and atherosclerotic plaque calcification.

Vascul Pharmacol. 2023-6

[7]
Smooth muscle cell-specific matrix metalloproteinase 3 deletion reduces osteogenic transformation and medial artery calcification.

Cardiovasc Res. 2024-5-7

[8]
Upregulation of NOR-1 in calcified human vascular tissues: impact on osteogenic differentiation and calcification.

Transl Res. 2024-2

[9]
Estrogen Receptor Control of Atherosclerotic Calcification and Smooth Muscle Cell Osteogenic Differentiation.

Arterioscler Thromb Vasc Biol. 2017-6

[10]
Paraspeckle protein NONO attenuates vascular calcification by inhibiting bone morphogenetic protein 2 transcription.

Kidney Int. 2024-6

引用本文的文献

[1]
Mineral Stress Drives Loss of Heterochromatin: An Early Harbinger of Vascular Inflammaging and Calcification.

Circ Res. 2025-2-14

[2]
Side- and Disease-Dependent Changes in Human Aortic Valve Cell Population and Transcriptomic Heterogeneity Determined by Single-Cell RNA Sequencing.

Genes (Basel). 2024-12-19

[3]
Hepatic Steatosis Aggravates Vascular Calcification via Extracellular Vesicle-Mediated Osteochondrogenic Switch of Vascular Smooth Muscle Cells.

Adv Sci (Weinh). 2025-2

[4]
High Blood Pressure and Impaired Brain Health: Investigating the Neuroprotective Potential of Magnesium.

Int J Mol Sci. 2024-11-5

[5]
Analysis of metastasis‑related risk factors and clinical relevance in adult soft‑tissue sarcoma.

Oncol Lett. 2024-8-28

[6]
AutoFocus: a hierarchical framework to explore multi-omic disease associations spanning multiple scales of biomolecular interaction.

Commun Biol. 2024-9-6

[7]
Osteogenic-Like Microenvironment of Renal Interstitium Induced by Osteomodulin Contributes to Randall's Plaque Formation.

Adv Sci (Weinh). 2024-10

[8]
Chronotherapy involving rosiglitazone regulates the phenotypic switch of vascular smooth muscle cells by shifting the phase of TNF-α rhythm through triglyceride accumulation in macrophages.

Heliyon. 2024-5-16

[9]
The biomedical knowledge graph of symptom phenotype in coronary artery plaque: machine learning-based analysis of real-world clinical data.

BioData Min. 2024-5-21

[10]
Protein glycosylation in cardiovascular health and disease.

Nat Rev Cardiol. 2024-8

本文引用的文献

[1]
Correlation Between Soluble Klotho and Vascular Calcification in Chronic Kidney Disease: A Meta-Analysis and Systematic Review.

Front Physiol. 2021-8-13

[2]
Osteomodulin positively regulates osteogenesis through interaction with BMP2.

Cell Death Dis. 2021-2-1

[3]
Inflammation, Oxidative Stress, and Bone in Chronic Kidney Disease in the Osteoimmunology Era.

Calcif Tissue Int. 2021-4

[4]
Klotho, Aging, and the Failing Kidney.

Front Endocrinol (Lausanne). 2020

[5]
Single-Cell Genomics Reveals a Novel Cell State During Smooth Muscle Cell Phenotypic Switching and Potential Therapeutic Targets for Atherosclerosis in Mouse and Human.

Circulation. 2020-11-24

[6]
Biomarkers Associated With Aortic Valve Calcification: Should We Focus on Sex Specific Processes?

Front Cell Dev Biol. 2020-7-10

[7]
Biomarkers of vascular calcification in serum.

Adv Clin Chem. 2020

[8]
Induced osteogenic differentiation of human smooth muscle cells as a model of vascular calcification.

Sci Rep. 2020-4-6

[9]
Nrf2 in early vascular ageing: Calcification, senescence and therapy.

Clin Chim Acta. 2020-2-22

[10]
Coronary Artery Disease and Type 2 Diabetes: A Proteomic Study.

Diabetes Care. 2020-1-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索