Suppr超能文献

使用氟脱氧葡萄糖正电子发射断层扫描成像技术优化阿尔茨海默病和额颞叶痴呆诊断的遗传算法

Genetic Algorithms for Optimized Diagnosis of Alzheimer's Disease and Frontotemporal Dementia Using Fluorodeoxyglucose Positron Emission Tomography Imaging.

作者信息

Díaz-Álvarez Josefa, Matias-Guiu Jordi A, Cabrera-Martín María Nieves, Pytel Vanesa, Segovia-Ríos Ignacio, García-Gutiérrez Fernando, Hernández-Lorenzo Laura, Matias-Guiu Jorge, Carreras José Luis, Ayala José L

机构信息

Department of Computer Architecture and Communications, Centro Universitario de Mérida, Universidad de Extremadura, Badajoz, Spain.

Department of Neurology, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain.

出版信息

Front Aging Neurosci. 2022 Feb 3;13:708932. doi: 10.3389/fnagi.2021.708932. eCollection 2021.

Abstract

Genetic algorithms have a proven capability to explore a large space of solutions, and deal with very large numbers of input features. We hypothesized that the application of these algorithms to F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) may help in diagnosis of Alzheimer's disease (AD) and Frontotemporal Dementia (FTD) by selecting the most meaningful features and automating diagnosis. We aimed to develop algorithms for the three main issues in the diagnosis: discrimination between patients with AD or FTD and healthy controls (HC), differential diagnosis between behavioral FTD (bvFTD) and AD, and differential diagnosis between primary progressive aphasia (PPA) variants. Genetic algorithms, customized with and as the fitness function, were developed and compared with Principal Component Analysis (PCA). K-fold cross validation within the same sample and external validation with ADNI-3 samples were performed. External validation was performed for the algorithms distinguishing AD and HC. Our study supports the use of FDG-PET imaging, which allowed a very high accuracy rate for the diagnosis of AD, FTD, and related disorders. Genetic algorithms identified the most meaningful features with the minimum set of features, which may be relevant for automated assessment of brain FDG-PET images. Overall, our study contributes to the development of an automated, and optimized diagnosis of neurodegenerative disorders using brain metabolism.

摘要

遗传算法已被证明有能力探索广阔的解决方案空间,并处理大量的输入特征。我们假设,将这些算法应用于氟代脱氧葡萄糖正电子发射断层扫描(FDG-PET),通过选择最有意义的特征并实现诊断自动化,可能有助于阿尔茨海默病(AD)和额颞叶痴呆(FTD)的诊断。我们旨在针对诊断中的三个主要问题开发算法:区分AD或FTD患者与健康对照(HC)、行为性FTD(bvFTD)与AD的鉴别诊断以及原发性进行性失语(PPA)变体的鉴别诊断。开发了以 和 作为适应度函数定制的遗传算法,并与主成分分析(PCA)进行比较。在同一样本内进行K折交叉验证,并使用ADNI-3样本进行外部验证。对区分AD和HC的算法进行了外部验证。我们的研究支持使用FDG-PET成像,其对AD、FTD及相关疾病的诊断具有非常高的准确率。遗传算法以最少的特征集识别出最有意义的特征,这可能与脑FDG-PET图像的自动评估相关。总体而言,我们的研究有助于利用脑代谢开发神经退行性疾病的自动化和优化诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验