Donnelly-Kehoe Patricio Andres, Pascariello Guido Orlando, García Adolfo M, Hodges John R, Miller Bruce, Rosen Howie, Manes Facundo, Landin-Romero Ramon, Matallana Diana, Serrano Cecilia, Herrera Eduar, Reyes Pablo, Santamaria-Garcia Hernando, Kumfor Fiona, Piguet Olivier, Ibanez Agustin, Sedeño Lucas
Multimedia Signal Processing Group - Neuroimage Division, French-Argentine International Center for Information and Systems Sciences (CIFASIS) - National Scientific and Technical Research Council (CONICET), Rosario, Argentina.
Laboratory of Neuroimaging and Neuroscience (LANEN), INECO Foundation Rosario, Rosario, Argentina.
Alzheimers Dement (Amst). 2019 Aug 28;11:588-598. doi: 10.1016/j.dadm.2019.06.002. eCollection 2019 Dec.
Timely diagnosis of behavioral variant frontotemporal dementia (bvFTD) remains challenging because it depends on clinical expertise and potentially ambiguous diagnostic guidelines. Recent recommendations highlight the role of multimodal neuroimaging and machine learning methods as complementary tools to address this problem.
We developed an automatic, cross-center, multimodal computational approach for robust classification of patients with bvFTD and healthy controls. We analyzed structural magnetic resonance imaging and resting-state functional connectivity from 44 patients with bvFTD and 60 healthy controls (across three imaging centers with different acquisition protocols) using a fully automated processing pipeline, including site normalization, native space feature extraction, and a random forest classifier.
Our method successfully combined multimodal imaging information with high accuracy (91%), sensitivity (83.7%), and specificity (96.6%).
This multimodal approach enhanced the system's performance and provided a clinically informative method for neuroimaging analysis. This underscores the relevance of combining multimodal imaging and machine learning as a gold standard for dementia diagnosis.
行为变异型额颞叶痴呆(bvFTD)的及时诊断仍然具有挑战性,因为它依赖于临床专业知识以及可能存在歧义的诊断指南。最近的建议强调了多模态神经影像学和机器学习方法作为解决这一问题的补充工具的作用。
我们开发了一种自动、跨中心的多模态计算方法,用于对bvFTD患者和健康对照进行稳健分类。我们使用全自动处理流程,包括位点归一化、原始空间特征提取和随机森林分类器,分析了来自44例bvFTD患者和60例健康对照(来自三个采用不同采集协议的成像中心)的结构磁共振成像和静息态功能连接性。
我们的方法成功地以高精度(91%)、灵敏度(83.7%)和特异性(96.6%)组合了多模态成像信息。
这种多模态方法提高了系统性能,并为神经影像学分析提供了一种具有临床信息的方法。这强调了将多模态成像和机器学习相结合作为痴呆诊断金标准的相关性。