Suppr超能文献

额颞叶痴呆:人工智能在鉴别诊断中应用的系统评价

Frontotemporal dementia: a systematic review of artificial intelligence approaches in differential diagnosis.

作者信息

Dattola Serena, Ielo Augusto, Varone Giuseppe, Cacciola Alberto, Quartarone Angelo, Bonanno Lilla

机构信息

IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy.

Brain Stimulation Mechanisms Laboratory, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, United States.

出版信息

Front Aging Neurosci. 2025 Apr 10;17:1547727. doi: 10.3389/fnagi.2025.1547727. eCollection 2025.

Abstract

INTRODUCTION

Frontotemporal dementia (FTD) is a neurodegenerative disorder characterized by progressive degeneration of the frontal and temporal lobes, leading to significant changes in personality, behavior, and language abilities. Early and accurate differential diagnosis between FTD, its subtypes, and other dementias, such as Alzheimer's disease (AD), is crucial for appropriate treatment planning and patient care. Machine learning (ML) techniques have shown promise in enhancing diagnostic accuracy by identifying complex patterns in clinical and neuroimaging data that are not easily discernible through conventional analysis.

METHODS

This systematic review, following PRISMA guidelines and registered in PROSPERO, aimed to assess the strengths and limitations of current ML models used in differentiating FTD from other neurological disorders. A comprehensive literature search from 2013 to 2024 identified 25 eligible studies involving 6,544 patients with dementia, including 2,984 with FTD, 3,437 with AD, 103 mild cognitive impairment (MCI) and 20 Parkinson's disease dementia or probable dementia with Lewy bodies (PDD/DLBPD).

RESULTS

The review found that Support Vector Machines (SVMs) were the most frequently used ML technique, often applied to neuroimaging and electrophysiological data. Deep learning methods, particularly convolutional neural networks (CNNs), have also been increasingly adopted, demonstrating high accuracy in distinguishing FTD from other dementias. The integration of multimodal data, including neuroimaging, EEG signals, and neuropsychological assessments, has been suggested to enhance diagnostic accuracy.

DISCUSSION

ML techniques showed strong potential for improving FTD diagnosis, but challenges like small sample sizes, class imbalance, and lack of standardization limit generalizability. Future research should prioritize the development of standardized protocols, larger datasets, and explainable AI techniques to facilitate the integration of ML-based tools into real-world clinical practice.

SYSTEMATIC REVIEW REGISTRATION

https://www.crd.york.ac.uk/PROSPERO/view/CRD42024520902.

摘要

引言

额颞叶痴呆(FTD)是一种神经退行性疾病,其特征为额叶和颞叶的进行性退化,导致人格、行为和语言能力发生显著变化。在FTD及其亚型与其他痴呆症(如阿尔茨海默病(AD))之间进行早期准确的鉴别诊断,对于制定合适的治疗方案和患者护理至关重要。机器学习(ML)技术通过识别临床和神经影像数据中通过传统分析不易察觉的复杂模式,在提高诊断准确性方面显示出了前景。

方法

本系统评价遵循PRISMA指南并在PROSPERO注册,旨在评估当前用于区分FTD与其他神经系统疾病的ML模型的优势和局限性。对2013年至2024年的文献进行全面检索,确定了25项符合条件的研究,涉及6544例痴呆患者,其中包括2984例FTD患者、3437例AD患者、103例轻度认知障碍(MCI)患者以及20例帕金森病痴呆或路易体痴呆疑似患者(PDD/DLBPD)。

结果

该评价发现,支持向量机(SVM)是最常用的ML技术,常用于神经影像和电生理数据。深度学习方法,特别是卷积神经网络(CNN),也越来越多地被采用,在区分FTD与其他痴呆症方面显示出高准确性。有人建议整合多模态数据,包括神经影像、脑电图信号和神经心理学评估,以提高诊断准确性。

讨论

ML技术在改善FTD诊断方面显示出强大潜力,但样本量小、类别不平衡和缺乏标准化等挑战限制了其普遍性。未来的研究应优先开发标准化方案、更大的数据集和可解释的人工智能技术,以促进基于ML的工具融入实际临床实践。

系统评价注册

https://www.crd.york.ac.uk/PROSPERO/view/CRD42024520902。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82d5/12018464/6eb845922c9e/fnagi-17-1547727-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验