Ahmed Osman Sirajeldeen, Omer Emad Eldin, Alshawwa Samar Zuhair, Alazzam Malik Bader, Khan Reefat Arefin
Ajman University, College of Humanities and Sciences, UAE.
Ajman University, College of Mass Communication, UAE.
Appl Bionics Biomech. 2022 Feb 11;2022:1201339. doi: 10.1155/2022/1201339. eCollection 2022.
Computing model may train on a distributed dataset using Medical Applications, which is a distributed computing technique. Instead of a centralised server, the model trains on device data. The server then utilizes this model to train a joint model. The aim of this study is that Medical Applications claims no data is transferred, thereby protecting privacy. Botnet assaults are identified through deep autoencoding and decentralised traffic analytics. Rather than enabling data to be transmitted or relocated off the network edge, the problem of the study is in privacy and security in Medical Applications strategies. Computation will be moved to the edge layer to achieve previously centralised outcomes while boosting data security. Study Results in our suggested model detects anomalies with up to 98 percent accuracy utilizing MAC IP and source/destination/IP for training. Our method beats a traditional centrally controlled system in terms of attack detection accuracy.
计算模型可以使用医学应用在分布式数据集上进行训练,这是一种分布式计算技术。该模型不是在集中式服务器上训练,而是在设备数据上进行训练。然后服务器利用这个模型来训练一个联合模型。本研究的目的是医学应用声称不传输任何数据,从而保护隐私。通过深度自动编码和分散式流量分析来识别僵尸网络攻击。该研究的问题不在于使数据在网络边缘传输或重新定位,而在于医学应用策略中的隐私和安全问题。计算将被转移到边缘层,以在提高数据安全性的同时实现以前集中式的结果。我们建议模型的研究结果表明,利用MAC IP以及源/目的/IP进行训练时,检测异常的准确率高达98%。在攻击检测准确性方面,我们的方法优于传统的集中控制系统。