Suppr超能文献

急性脑损伤中兴奋性毒性和氧化应激的纳米治疗调控

Nanotherapeutic modulation of excitotoxicity and oxidative stress in acute brain injury.

作者信息

Liao Rick, Wood Thomas R, Nance Elizabeth

机构信息

Department of Chemical Engineering, University of Washington, Seattle, WA, USA.

Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, WA, USA.

出版信息

Nanobiomedicine (Rij). 2020 Nov 4;7:1849543520970819. doi: 10.1177/1849543520970819. eCollection 2020 Jan-Dec.

Abstract

Excitotoxicity is a primary pathological process that occurs during stroke, traumatic brain injury (TBI), and global brain ischemia such as perinatal asphyxia. Excitotoxicity is triggered by an overabundance of excitatory neurotransmitters within the synapse, causing a detrimental cascade of excessive sodium and calcium influx, generation of reactive oxygen species, mitochondrial damage, and ultimately cell death. There are multiple potential points of intervention to combat excitotoxicity and downstream oxidative stress, yet there are currently no therapeutics clinically approved for this specific purpose. For a therapeutic to be effective against excitotoxicity, the therapeutic must accumulate at the disease site at the appropriate concentration at the right time. Nanotechnology can provide benefits for therapeutic delivery, including overcoming physiological obstacles such as the blood-brain barrier, protect cargo from degradation, and provide controlled release of a drug. This review evaluates the use of nano-based therapeutics to combat excitotoxicity in stroke, TBI, and hypoxia-ischemia with an emphasis on mitigating oxidative stress, and consideration of the path forward toward clinical translation.

摘要

兴奋性毒性是一种主要的病理过程,发生于中风、创伤性脑损伤(TBI)以及诸如围产期窒息等全脑缺血情况。兴奋性毒性由突触内过量的兴奋性神经递质引发,导致有害的级联反应,包括过量的钠和钙内流、活性氧的产生、线粒体损伤,最终导致细胞死亡。对抗兴奋性毒性和下游氧化应激有多个潜在的干预点,但目前尚无针对此特定目的的临床批准疗法。要使一种疗法有效对抗兴奋性毒性,该疗法必须在合适的时间以适当的浓度在疾病部位蓄积。纳米技术可为治疗递送带来益处,包括克服诸如血脑屏障等生理障碍、保护所载药物不被降解以及实现药物的控释。本综述评估了基于纳米的疗法在中风、TBI和缺氧缺血中对抗兴奋性毒性的应用,重点是减轻氧化应激,并考虑向临床转化的前进方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0678/8855450/5b1bb80b919d/10.1177_1849543520970819-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验