Suppr超能文献

TRAIT2D:用于单颗粒扩散数据分析的软件。

TRAIT2D: a Software for Quantitative Analysis of Single Particle Diffusion Data.

机构信息

Leibniz-Institut für Photonische Technologien e.V, Jena, Germany.

Institute of Applied Optics and Biophysics, Friedrich-Schiller-Universität, Jena, Germany.

出版信息

F1000Res. 2021 Aug 20;10:838. doi: 10.12688/f1000research.54788.2. eCollection 2021.

Abstract

Single particle tracking (SPT) is one of the most widely used tools in optical microscopy to evaluate particle mobility in a variety of situations, including cellular and model membrane dynamics. Recent technological developments, such as Interferometric Scattering microscopy, have allowed recording of long, uninterrupted single particle trajectories at kilohertz framerates. The resulting data, where particles are continuously detected and do not displace much between observations, thereby do not require complex linking algorithms. Moreover, while these measurements offer more details into the short-term diffusion behaviour of the tracked particles, they are also subject to the influence of localisation uncertainties, which are often underestimated by conventional analysis pipelines. we thus developed a Python library, under the name of TRAIT2D (Tracking Analysis Toolbox - 2D version), in order to track particle diffusion at high sampling rates, and analyse the resulting trajectories with an innovative approach. The data analysis pipeline introduced is more localisation-uncertainty aware, and also selects the most appropriate diffusion model for the data provided on a statistical basis. A trajectory simulation platform also allows the user to handily generate trajectories and even synthetic time-lapses to test alternative tracking algorithms and data analysis approaches. A high degree of customisation for the analysis pipeline, for example with the introduction of different diffusion modes, is possible from the source code. Finally, the presence of graphical user interfaces lowers the access barrier for users with little to no programming experience.

摘要

单颗粒跟踪 (SPT) 是光学显微镜中最广泛使用的工具之一,可用于评估各种情况下的颗粒迁移率,包括细胞和模型膜动力学。最近的技术发展,如干涉散射显微镜,允许以千赫兹帧率记录长的、不间断的单颗粒轨迹。由此产生的数据中,颗粒不断被检测到,并且在观察之间没有明显位移,因此不需要复杂的链接算法。此外,虽然这些测量提供了更多关于跟踪颗粒短期扩散行为的细节,但它们也受到局部定位不确定性的影响,而传统的分析管道往往低估了这种影响。因此,我们开发了一个名为 TRAIT2D(跟踪分析工具箱-2D 版)的 Python 库,以便在高采样率下跟踪颗粒扩散,并采用创新方法分析得到的轨迹。引入的数据分析管道更加了解局部定位不确定性,并根据统计数据为提供的数据选择最合适的扩散模型。轨迹模拟平台还允许用户方便地生成轨迹,甚至生成合成的延时视频,以测试替代的跟踪算法和数据分析方法。从源代码中可以实现分析管道的高度定制化,例如引入不同的扩散模式。最后,图形用户界面的存在降低了对编程经验较少或没有编程经验的用户的访问门槛。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b4/8829094/718892c380c9/f1000research-10-119173-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验