Suppr超能文献

用于增强可见光驱动的CO还原的COF-5/CoAl-LDH纳米复合异质结

COF-5/CoAl-LDH Nanocomposite Heterojunction for Enhanced Visible-Light-Driven CO Reduction.

作者信息

Ou Siyong, Zhou Min, Chen Wen, Zhang Yuyao, Liu Yueli

机构信息

State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.

出版信息

ChemSusChem. 2022 Apr 7;15(7):e202200184. doi: 10.1002/cssc.202200184. Epub 2022 Mar 3.

Abstract

Photocatalytic conversion of CO into value-added chemical fuels is an attractive route to mitigate global warming and the energy crisis. Reasonable design of optical properties and electronic behavior of the photocatalyst are essential to improve their catalytic activity. Herein, the 1D/2D heterojunction by direct in-situ synthesis of the covalent organic framework (COF)-5 colloid on the surface of CoAl layered double hydroxide (LDH) was used as the prospective photocatalyst for CO reduction. COF-5/CoAl-LDH nanocomposite achieved 265.4 μmol g of CO with 94.6 % selectivity over CH evolution in 5 h under visible light irradiation, which was 4.8 and 2.3 times higher than those of COF-5 colloid and CoAl-LDH, respectively. The enhanced catalytic activity was derived from the increased visible-light activity and the construction of type II-2 heterojunction, which greatly optimized visible light harvesting and accelerated the efficient separation of the photoinduced holes and electrons. This work paves the way for rational design of heterojunction catalysts in photocatalytic CO reduction.

摘要

将二氧化碳光催化转化为高附加值的化学燃料是缓解全球变暖和能源危机的一条有吸引力的途径。合理设计光催化剂的光学性质和电子行为对于提高其催化活性至关重要。在此,通过在钴铝层状双氢氧化物(LDH)表面直接原位合成共价有机框架(COF)-5胶体形成的一维/二维异质结被用作还原二氧化碳的潜在光催化剂。在可见光照射下,COF-5/CoAl-LDH纳米复合材料在5小时内实现了265.4 μmol g的一氧化碳生成量,对甲烷生成的选择性为94.6%,分别是COF-5胶体和CoAl-LDH的4.8倍和2.3倍。增强的催化活性源于可见光活性的提高和II-2型异质结的构建,这极大地优化了可见光的捕获并加速了光生空穴和电子的有效分离。这项工作为光催化还原二氧化碳中异质结催化剂的合理设计铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验