Biswas Sandip, Rahimi Faruk Ahamed, Saravanan R Kamal, Dey Anupam, Chauhan Jatin, Surendran Devika, Nath Sukhendu, Maji Tapas Kumar
Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
Radiation and Photochemistry Division, Bhabha Atomic Research Center Mumbai 400085 India.
Chem Sci. 2024 Sep 4;15(39):16259-70. doi: 10.1039/d4sc03163f.
Solar-light driven reduction of CO to CH is a complex process involving multiple electron and proton transfer processes with various intermediates. Therefore, achieving high CH activity and selectivity remains a significant challenge. Covalent organic frameworks (COFs) represent an emerging class of photoactive semiconductors with molecular level structural tunability, modular band gaps, and high charge carrier generation and transport within the network. Here, we developed a new heterocyclic triazole ring containing COF, TFPB-TRZ, through the condensation reaction between 1,3,5-tris(4-formylphenyl)benzene (TFPB) and 3,5-diamino-1,2,4-triazole (TRZ). The TFPB-TRZ COF with multiple heteroatoms shows suitable visible light absorption, high CO uptake capability and an appropriate band diagram for CO photoreduction. Photocatalysis results reveal a maximum CO to CH conversion of 2.34 mmol g with a rate of 128 μmol g h and high selectivity (∼99%) using 1-benzyl-1,4-dihydronicotinamide (BNAH) and triethylamine (TEA) as sacrificial agents. Under similar reaction conditions in the presence of direct sunlight, the TFPB-TRZ COF displays a maximum CH yield of 493 μmol g with a rate of 61.62 μmol g h, suggesting the robustness and light-harvesting ability of the COF photocatalyst. A femtosecond transient absorption (TA) spectroscopy study shows fast decay of excited state absorption (ESA) in the COF compared to the TFPB building unit due to efficient electron transfer to the catalytic site in the framework. The mechanism of CO reduction to CH is studied by DFT-based theoretical calculation, which is further supported by an diffuse reflectance infrared Fourier transform spectroscopic (DRIFTS) study. The DFT results reveal that the lone pair of electrons on nitrogen heteroatoms present in the triazole ring of the TRZ moiety help in the stabilization of the CO intermediate during CO to CH conversion. Overall, this work demonstrates the use of a metal-free, recyclable COF-based photocatalytic system for solar energy storage by CO reduction.
太阳光驱动的CO还原为CH是一个复杂的过程,涉及多个电子和质子转移过程以及各种中间体。因此,实现高CH活性和选择性仍然是一项重大挑战。共价有机框架(COF)是一类新兴的光活性半导体,具有分子水平的结构可调性、模块化带隙以及网络内高电荷载流子的产生和传输能力。在此,我们通过1,3,5-三(4-甲酰基苯基)苯(TFPB)与3,5-二氨基-1,2,4-三唑(TRZ)之间的缩合反应,开发了一种含新型杂环三唑环的COF,即TFPB-TRZ。具有多个杂原子的TFPB-TRZ COF表现出合适的可见光吸收、高CO吸附能力以及用于CO光还原的合适能带图。光催化结果表明,使用1-苄基-1,4-二氢烟酰胺(BNAH)和三乙胺(TEA)作为牺牲剂时,CO到CH的最大转化率为2.34 mmol g,速率为128 μmol g h,且选择性高(约99%)。在直接阳光照射的类似反应条件下,TFPB-TRZ COF的最大CH产率为493 μmol g,速率为61.62 μmol g h,表明该COF光催化剂具有稳定性和光捕获能力。飞秒瞬态吸收(TA)光谱研究表明,与TFPB构建单元相比,由于电子有效地转移到框架中的催化位点,COF中激发态吸收(ESA)的衰减更快。通过基于密度泛函理论(DFT)的理论计算研究了CO还原为CH的机理,漫反射红外傅里叶变换光谱(DRIFTS)研究进一步支持了该机理。DFT结果表明,TRZ部分三唑环中氮杂原子上的孤对电子有助于在CO转化为CH的过程中稳定CO中间体。总体而言,这项工作展示了一种用于通过CO还原进行太阳能存储的无金属、可回收的基于COF的光催化系统。