Suppr超能文献

新型无机-有机β-GaO/COF 异质结的界面工程,用于加速人工光合作用中的电荷转移。

Interfacial engineering of novel inorganic-organic β-GaO/COF heterojunction for accelerated charge transfer towards artificial photosynthesis.

机构信息

Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, PR China.

Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, PR China.

出版信息

Environ Res. 2023 Jan 1;216(Pt 1):114541. doi: 10.1016/j.envres.2022.114541. Epub 2022 Oct 10.

Abstract

Semiconductor-based solar-driven CO to fuels has been widely reckoned as an ingenious approach to tackle energy crisis and climate change simultaneously. However, the high carrier recombination rate of the photocatalyst severely dampens their photocatalytic uses. Herein, an inorganic-organic heterojunction was constructed by in-situ growing a dioxin-linked covalent organic framework (COF) on the surface of rod-shaped β-GaO for solar-driven CO to fuel. This novel heterojunction is featured with an ultra-narrow bandgap COF-318 (absorption edge = 760 nm), which is beneficial for fully utilizing the visible light spectrum, and a wide bandgap β-GaO (absorption edge = 280 nm) to directional conduct electrons from COF to reduce CO without electron-hole recombination occurred. Results showed that the solar to fuels performance over β-GaO/COF was much superb than that of COF. The optimized GaO/COF achieved an outstanding CO evolution rate of 85.8 μmol h·g without the need of any sacrificial agent or cocatalyst, which was 15.6 times more efficient than COF. Moreover, the analyses of photoluminescence electrochemical characterizations and density functional theory (DFT) calculations revealed that the fascinate construction of β-GaO/COF heterojunction significantly favored charge separation and the directional transfer of photogenerated electrons from COF to β-GaO followed by CO. This study paves the way for developing effective COF-based semiconductor photocatalysts for solar-to-fuel conversion.

摘要

基于半导体的太阳能驱动 CO 到燃料的方法被广泛认为是同时解决能源危机和气候变化的一种巧妙方法。然而,光催化剂的高载流子复合率严重抑制了其光催化应用。在此,通过在棒状β-GaO 表面原位生长二恶英连接的共价有机框架(COF),构建了一种无机-有机异质结,用于太阳能驱动 CO 到燃料。这种新型异质结具有超窄带隙 COF-318(吸收边缘=760nm),有利于充分利用可见光光谱,以及宽带隙β-GaO(吸收边缘=280nm),将电子从 COF 定向传导到β-GaO 以还原 CO,而不会发生电子-空穴复合。结果表明,β-GaO/COF 的太阳能到燃料性能优于 COF。优化后的 GaO/COF 实现了出色的 CO 演化速率为 85.8μmol h·g,而无需任何牺牲剂或助催化剂,比 COF 效率高 15.6 倍。此外,光致发光电化学特性和密度泛函理论(DFT)计算分析表明,β-GaO/COF 异质结的迷人结构显著有利于电荷分离和光生电子从 COF 到β-GaO 的定向转移,随后是 CO。这项研究为开发用于太阳能到燃料转化的有效 COF 基半导体光催化剂铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验