Quenzel Thomas, Timmer Daniel, Gittinger Moritz, Zablocki Jennifer, Zheng Fulu, Schiek Manuela, Lützen Arne, Frauenheim Thomas, Tretiak Sergei, Silies Martin, Zhong Jin-Hui, De Sio Antonietta, Lienau Christoph
Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany.
Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn 53121, Germany.
ACS Nano. 2022 Mar 22;16(3):4693-4704. doi: 10.1021/acsnano.1c11398. Epub 2022 Feb 21.
Enlarging exciton coherence lengths in molecular aggregates is critical for enhancing the collective optical and transport properties of molecular thin film nanostructures or devices. We demonstrate that the exciton coherence length of squaraine aggregates can be increased from 10 to 24 molecular units at room temperature when preparing the aggregated thin film on a metallic rather than a dielectric substrate. Two-dimensional electronic spectroscopy measurements reveal a much lower degree of inhomogeneous line broadening for aggregates on a gold film, pointing to a reduced disorder. The result is corroborated by simulations based on a Frenkel exciton model including exciton-plasmon coupling effects. The simulation shows that localized, energetically nearly resonant excitons on spatially well separated segments can be radiatively coupled delocalized surface plasmon polariton modes at a planar molecule-gold interface. Such plasmon-enhanced delocalization of the exciton wave function is of high importance for improving the coherent transport properties of molecular aggregates on the nanoscale. Additionally, it may help tailor the collective optical response of organic materials for quantum optical applications.
扩大分子聚集体中的激子相干长度对于增强分子薄膜纳米结构或器件的集体光学和传输特性至关重要。我们证明,当在金属而非介电衬底上制备聚集薄膜时,方酸菁聚集体的激子相干长度在室温下可从10个分子单元增加到24个分子单元。二维电子光谱测量表明,金膜上聚集体的非均匀线宽程度要低得多,这表明无序程度降低。基于包含激子 - 等离子体耦合效应的弗伦克尔激子模型的模拟证实了这一结果。模拟表明,在空间上充分分离的片段上局部化、能量上近乎共振的激子可以在平面分子 - 金界面处与离域表面等离子体激元模式进行辐射耦合。这种等离子体增强的激子波函数离域对于改善纳米尺度上分子聚集体的相干传输特性非常重要。此外,它可能有助于为量子光学应用定制有机材料的集体光学响应。