Schnappinger Thomas, Falvo Cyril, Kowalewski Markus
Department of Physics, Stockholm University, AlbaNova University Center, SE-10691 Stockholm, Sweden.
Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France.
J Chem Phys. 2024 Dec 28;161(24). doi: 10.1063/5.0239877.
Vibrational polaritons are formed by strong coupling of molecular vibrations and photon modes in an optical cavity. Experiments have demonstrated that vibrational strong coupling can change molecular properties and even affect chemical reactivity. However, the interactions in a molecular ensemble are complex, and the exact mechanisms that lead to modifications are not fully understood yet. We simulate two-dimensional infrared spectra of molecular vibrational polaritons based on the double quantum coherence technique to gain further insight into the complex many-body structure of these hybrid light-matter states. Double quantum coherence uniquely resolves the excitation of hybrid light-matter polaritons and allows one to directly probe the anharmonicities of the resulting states. By combining the cavity Born-Oppenheimer Hartree-Fock ansatz with a full quantum dynamics simulation of the corresponding eigenstates, we go beyond simplified model systems. This allows us to study the influence of self-polarization and the response of the electronic structure to the cavity interaction on the spectral features even beyond the single-molecule case.
振动极化激元是由光学腔中分子振动与光子模式的强耦合形成的。实验表明,振动强耦合可以改变分子性质,甚至影响化学反应活性。然而,分子系综中的相互作用很复杂,导致这些变化的确切机制尚未完全理解。我们基于双量子相干技术模拟分子振动极化激元的二维红外光谱,以进一步深入了解这些混合光物质态的复杂多体结构。双量子相干独特地分辨了混合光物质极化激元的激发,并允许直接探测所得态的非谐性。通过将腔玻恩 - 奥本海默哈特里 - 福克近似与相应本征态的全量子动力学模拟相结合,我们超越了简化模型系统。这使我们能够研究自极化的影响以及电子结构对腔相互作用的响应,甚至超越单分子情况对光谱特征的影响。