Suppr超能文献

比较步时变异性的自适应分形和去趋势波动分析:等效性检验。

Comparing adaptive fractal and detrended fluctuation analyses of stride time variability: Tests of equivalence.

机构信息

Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, MN, USA; Program in Physical Therapy, Mayo Clinic School of Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.

Program in Physical Therapy, Mayo Clinic School of Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.

出版信息

Gait Posture. 2022 May;94:9-14. doi: 10.1016/j.gaitpost.2022.02.019. Epub 2022 Feb 17.

Abstract

BACKGROUND

Fractal analyses quantify self-similarities in stride-to-stride fluctuations over different time scales. Fractal exponents can be measured with adaptive fractal analysis (AFA) or detrended fluctuation analysis (DFA), though measurements obtained with the algorithms have not been directly compared.

RESEARCH QUESTION

Are stride time fractal exponents measured with AFA and DFA algorithms equivalent?

METHODS

Data from 50 participants with Parkinson's Disease (n = 15), age-similar healthy adults (n = 15) and healthy young adults (n = 20) were analyzed in this cross-sectional, observational study. Participants completed 6-min walks at self-selected speeds overground on a straight walkway and on a treadmill. Stride times were measured with inertial measurement units. Fractal exponents in stride time data were processed using AFA and DFA algorithms and compared with two one-sided tests of equivalence. Mixed ANOVAs were used to compare exponents between groups and conditions.

RESULTS

Fractal exponents computed with AFA and DFA were equivalent neither in the overground (0.796 & 0.830, respectively, p = .587) nor treadmill conditions (0.806 & 0.882, respectively, p = .122). Fractal exponents measured with DFA were higher than when measured with AFA. Standard errors were 22% lower when measured with AFA. Additionally, a group × condition interaction was statistically significant when fractal exponents were processed with the AFA algorithm (F(2,47) = 11.696, p < .001), whereas the group × condition interaction was not statistically significant when DFA exponents were compared (F(2, 47) = 2.144, p = .129).

SIGNIFICANCE

AFA and DFA do not produce equivalent estimates of the fractal exponent α in stride time dynamics. Estimates of the fractal exponent α obtained with AFA or DFA algorithms therefore should not be used interchangeably. Standard errors were lower when derived with AFA. Fractal exponents calculated with AFA may be more sensitive to conditions that influence stride time fractal dynamics than are measures calculated with DFA.

摘要

背景

分形分析可量化不同时间尺度上步长波动的自相似性。分形指数可以通过自适应分形分析(AFA)或去趋势波动分析(DFA)进行测量,尽管这两种算法的测量值尚未直接比较。

研究问题

通过 AFA 和 DFA 算法测量的步时分形指数是否等效?

方法

本横断面观察性研究分析了 50 名帕金森病患者(n=15)、年龄相似的健康成年人(n=15)和健康年轻人(n=20)的数据。参与者在直道和跑步机上以自选速度完成 6 分钟步行。使用惯性测量单元测量步幅时间。使用 AFA 和 DFA 算法处理步幅时间数据中的分形指数,并通过双侧等价检验进行比较。混合方差分析用于比较组间和条件间的指数。

结果

AFA 和 DFA 计算得出的分形指数在地面(分别为 0.796 和 0.830,p=0.587)和跑步机条件下均不等效(分别为 0.806 和 0.882,p=0.122)。DFA 测量的分形指数高于 AFA。当使用 AFA 测量时,标准误差降低了 22%。此外,当使用 AFA 算法处理分形指数时,组间条件交互作用具有统计学意义(F(2,47)=11.696,p<0.001),而当比较 DFA 指数时,组间条件交互作用不具有统计学意义(F(2,47)=2.144,p=0.129)。

意义

AFA 和 DFA 不会产生步长时间动力学中分形指数α的等效估计值。因此,不应互换使用 AFA 或 DFA 算法获得的分形指数α的估计值。当使用 AFA 时,标准误差较低。与使用 DFA 计算的指标相比,使用 AFA 计算得出的分形指数可能对影响步长时间分形动力学的条件更敏感。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验