Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Kerala, India.
Virus Research and Diagnostic Centre, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Kerala, India.
J Biomol Struct Dyn. 2023 Apr;41(7):2911-2925. doi: 10.1080/07391102.2022.2041487. Epub 2022 Feb 22.
SARS-CoV-2 infection causes asymptomatic to severe human respiratory diseases. Vaccinations are effective only to a certain extent, and the disease recurs with milder symptoms even after booster doses. Hence, we hypothesize that antiviral therapy in conjunction with vaccination is the need of the hour for containing the disease. SARS-CoV-2 enters the host cell through interaction between viral spike (S) protein and human Angiotensin II converting enzyme2 (ACE2). So, any S-protein neutralizing molecule could be a potential antiviral moiety. The interaction-interface architecture indicates that cationic peptides effectively bind to anionic interface residues of S protein-receptor binding domain (S-RBD). Subsequently, we adopted molecular docking and simulation approaches to examine the binding affinity of cationic human α and β defensins, HNP1 and HBD2 with S-RBD. We observed strong hydrogen bonds, electrostatic, salt bridge, and hydrophobic interactions between these defensins and S-RBD with binding energy (BE) of -10.7 kcal/mol. Interestingly, defensins from (ZmD32), TPP3), and DEF1_SORBI) exhibited approximately similar BE of -11.1 kcal/mol, -11.9 kcal/mol, and -12.6 kcal/mol respectively, comparable to ACE2 (BE= -11.9 kcal/mol). Molecular dynamics simulation of S-RBD complexes formed with HBD2, ZmD32 and TPP3, showed stable associations for 100 ns. Results of studies demonstrated higher binding affinity of more positively-charged peptides with S-RBD, suggesting the potential of plant defensins to block ACE2 binding of S-RBD. These results warrant experimental validation. However these findings indicate the usefulness of plant defensin homologues as neutralizing antiviral agents for use as ideal prophylactic and therapeutic drugs for COVID-19.Communicated by Ramaswamy H. Sarma.
SARS-CoV-2 感染会导致无症状到严重的人类呼吸道疾病。疫苗的有效性是有限的,即使在加强剂量后,疾病也会以较轻的症状复发。因此,我们假设抗病毒治疗与疫苗接种相结合是控制疾病的当务之急。SARS-CoV-2 通过病毒刺突(S)蛋白与人类血管紧张素转换酶 2(ACE2)之间的相互作用进入宿主细胞。因此,任何 S 蛋白中和分子都可能是一种潜在的抗病毒药物。相互作用界面结构表明,阳离子肽可有效地与 S 蛋白受体结合域(S-RBD)的阴离子界面残基结合。随后,我们采用分子对接和模拟方法研究了阳离子人α和β防御素、HNP1 和 HBD2 与 S-RBD 的结合亲和力。我们观察到这些防御素与 S-RBD 之间存在强烈的氢键、静电、盐桥和疏水相互作用,结合能(BE)为-10.7 kcal/mol。有趣的是,来自玉米(ZmD32)、水稻(TPP3)和拟南芥(DEF1_SORBI)的防御素分别表现出约相似的 BE 值-11.1 kcal/mol、-11.9 kcal/mol 和-12.6 kcal/mol,与 ACE2(BE=-11.9 kcal/mol)相当。与 HBD2、ZmD32 和 TPP3 形成的 S-RBD 复合物的分子动力学模拟显示,稳定结合 100 ns。研究结果表明,带更多正电荷的肽与 S-RBD 具有更高的结合亲和力,这表明植物防御素具有阻止 ACE2 与 S-RBD 结合的潜力。这些结果需要进一步验证。然而,这些发现表明植物防御素同源物作为中和抗病毒药物的有用性,可作为 COVID-19 的理想预防和治疗药物。由 Ramaswamy H. Sarma 传达。