Zhao Tom Y, Patankar Neelesh A
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, USA.
J Cell Biochem. 2021 Jul;122(7):752-759. doi: 10.1002/jcb.29909. Epub 2021 Feb 22.
The coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains an extant threat against public health on a global scale. Cell infection begins when the spike protein of SARS-CoV-2 binds with the human cell receptor, angiotensin-converting enzyme 2 (ACE2). Here, we address the role of tetracycline as an inhibitor for the receptor-binding domain (RBD) of the spike protein. Targeted molecular investigation show that tetracycline binds more favorably to the RBD (-9.40 kcal/mol) compared to doxycycline (-8.08 kcal/mol), chloroquine (-6.31 kcal/mol), or gentamicin (-4.83 kcal/mol) while inhibiting attachment to ACE2 to a greater degree (binding efficiency of 2.98 kcal/(mol nm ) for tetracycline-RBD, 5.16 kcal/(mol nm ) for doxycycline-RBD, 5.59 kcal/(mol nm ) for chloroquine-RBD, and 7.02 kcal/(mol nm ) for gentamicin-RBD. Stronger inhibition by tetracycline is verified with nonequilibrium PMF calculations, for which the tetracycline-RBD complex exhibits the lowest free energy profile along the dissociation pathway from ACE2. Tetracycline binds to tyrosine and glycine residues on the viral contact interface that are known to modulate molecular recognition and bonding affinity. These RBD residues also engage in significant hydrogen bonding with the human receptor ACE2. The ability to preclude cell infection complements the anti-inflammatory and cytokine suppressing capability of tetracycline; this may reduce the duration of ICU stays and mechanical ventilation induced by the coronavirus SARS-CoV-2.
新型冠状病毒严重急性呼吸综合征冠状病毒2(SARS-CoV-2)仍然是全球范围内对公众健康的现存威胁。当SARS-CoV-2的刺突蛋白与人细胞受体血管紧张素转换酶2(ACE2)结合时,细胞感染就开始了。在此,我们探讨四环素作为刺突蛋白受体结合域(RBD)抑制剂的作用。靶向分子研究表明,与强力霉素(-8.08 kcal/mol)、氯喹(-6.31 kcal/mol)或庆大霉素(-4.83 kcal/mol)相比,四环素与RBD的结合更有利(-9.40 kcal/mol),同时在更大程度上抑制与ACE2的附着(四环素-RBD的结合效率为2.98 kcal/(mol·nm),强力霉素-RBD为5.16 kcal/(mol·nm),氯喹-RBD为5.59 kcal/(mol·nm),庆大霉素-RBD为7.02 kcal/(mol·nm))。通过非平衡PMF计算验证了四环素更强的抑制作用,在从ACE2解离的途径上,四环素-RBD复合物表现出最低的自由能分布。四环素与病毒接触界面上的酪氨酸和甘氨酸残基结合,已知这些残基可调节分子识别和结合亲和力。这些RBD残基也与人类受体ACE2进行大量氢键结合。预防细胞感染的能力补充了四环素的抗炎和细胞因子抑制能力;这可能会缩短由冠状病毒SARS-CoV-2引起的重症监护病房住院时间和机械通气时间。