Suppr超能文献

四环素作为一种针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的抑制剂。

Tetracycline as an inhibitor to the SARS-CoV-2.

作者信息

Zhao Tom Y, Patankar Neelesh A

机构信息

Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, USA.

出版信息

J Cell Biochem. 2021 Jul;122(7):752-759. doi: 10.1002/jcb.29909. Epub 2021 Feb 22.

Abstract

The coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains an extant threat against public health on a global scale. Cell infection begins when the spike protein of SARS-CoV-2 binds with the human cell receptor, angiotensin-converting enzyme 2 (ACE2). Here, we address the role of tetracycline as an inhibitor for the receptor-binding domain (RBD) of the spike protein. Targeted molecular investigation show that tetracycline binds more favorably to the RBD (-9.40 kcal/mol) compared to doxycycline (-8.08 kcal/mol), chloroquine (-6.31 kcal/mol), or gentamicin (-4.83 kcal/mol) while inhibiting attachment to ACE2 to a greater degree (binding efficiency of 2.98 kcal/(mol nm ) for tetracycline-RBD, 5.16 kcal/(mol nm ) for doxycycline-RBD, 5.59 kcal/(mol nm ) for chloroquine-RBD, and 7.02 kcal/(mol nm ) for gentamicin-RBD. Stronger inhibition by tetracycline is verified with nonequilibrium PMF calculations, for which the tetracycline-RBD complex exhibits the lowest free energy profile along the dissociation pathway from ACE2. Tetracycline binds to tyrosine and glycine residues on the viral contact interface that are known to modulate molecular recognition and bonding affinity. These RBD residues also engage in significant hydrogen bonding with the human receptor ACE2. The ability to preclude cell infection complements the anti-inflammatory and cytokine suppressing capability of tetracycline; this may reduce the duration of ICU stays and mechanical ventilation induced by the coronavirus SARS-CoV-2.

摘要

新型冠状病毒严重急性呼吸综合征冠状病毒2(SARS-CoV-2)仍然是全球范围内对公众健康的现存威胁。当SARS-CoV-2的刺突蛋白与人细胞受体血管紧张素转换酶2(ACE2)结合时,细胞感染就开始了。在此,我们探讨四环素作为刺突蛋白受体结合域(RBD)抑制剂的作用。靶向分子研究表明,与强力霉素(-8.08 kcal/mol)、氯喹(-6.31 kcal/mol)或庆大霉素(-4.83 kcal/mol)相比,四环素与RBD的结合更有利(-9.40 kcal/mol),同时在更大程度上抑制与ACE2的附着(四环素-RBD的结合效率为2.98 kcal/(mol·nm),强力霉素-RBD为5.16 kcal/(mol·nm),氯喹-RBD为5.59 kcal/(mol·nm),庆大霉素-RBD为7.02 kcal/(mol·nm))。通过非平衡PMF计算验证了四环素更强的抑制作用,在从ACE2解离的途径上,四环素-RBD复合物表现出最低的自由能分布。四环素与病毒接触界面上的酪氨酸和甘氨酸残基结合,已知这些残基可调节分子识别和结合亲和力。这些RBD残基也与人类受体ACE2进行大量氢键结合。预防细胞感染的能力补充了四环素的抗炎和细胞因子抑制能力;这可能会缩短由冠状病毒SARS-CoV-2引起的重症监护病房住院时间和机械通气时间。

相似文献

1
Tetracycline as an inhibitor to the SARS-CoV-2.
J Cell Biochem. 2021 Jul;122(7):752-759. doi: 10.1002/jcb.29909. Epub 2021 Feb 22.
2
Molecular screening of glycyrrhizin-based inhibitors against ACE2 host receptor of SARS-CoV-2.
J Mol Model. 2021 Jun 24;27(7):206. doi: 10.1007/s00894-021-04816-y.
6
Examining sialic acid derivatives as potential inhibitors of SARS-CoV-2 spike protein receptor binding domain.
J Biomol Struct Dyn. 2024 Aug;42(12):6342-6358. doi: 10.1080/07391102.2023.2234044. Epub 2023 Jul 9.
8
Inhibition of S-protein RBD and hACE2 Interaction for Control of SARSCoV- 2 Infection (COVID-19).
Mini Rev Med Chem. 2021;21(6):689-703. doi: 10.2174/1389557520666201117111259.
10
In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection.
Int J Antimicrob Agents. 2020 Sep;56(3):106119. doi: 10.1016/j.ijantimicag.2020.106119. Epub 2020 Jul 30.

引用本文的文献

1
Treatments of COVID-19-Associated Taste and Saliva Secretory Disorders.
Dent J (Basel). 2023 May 25;11(6):140. doi: 10.3390/dj11060140.
2
Glutamic acid-capped iron oxide quantum dots as fluorescent nanoprobe for tetracycline in urine.
Mikrochim Acta. 2023 May 17;190(6):226. doi: 10.1007/s00604-023-05801-3.
3
Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2.
Chem Rev. 2022 Jul 13;122(13):11287-11368. doi: 10.1021/acs.chemrev.1c00965. Epub 2022 May 20.
4
Repurposing tetracyclines for acute respiratory distress syndrome (ARDS) and severe COVID-19: a critical discussion of recent publications.
Expert Opin Investig Drugs. 2022 May;31(5):475-482. doi: 10.1080/13543784.2022.2054325. Epub 2022 Mar 23.
5
Structural biology of SARS-CoV-2: open the door for novel therapies.
Signal Transduct Target Ther. 2022 Jan 27;7(1):26. doi: 10.1038/s41392-022-00884-5.
7
Pleiotropic Effects of Tetracyclines in the Management of COVID-19: Emerging Perspectives.
Front Pharmacol. 2021 Apr 23;12:642822. doi: 10.3389/fphar.2021.642822. eCollection 2021.

本文引用的文献

1
Doxycycline as a potential partner of COVID-19 therapies.
IDCases. 2020 Jun 6;21:e00864. doi: 10.1016/j.idcr.2020.e00864. eCollection 2020.
3
Structural and simulation analysis of hotspot residues interactions of SARS-CoV 2 with human ACE2 receptor.
J Biomol Struct Dyn. 2021 Jul;39(11):4015-4025. doi: 10.1080/07391102.2020.1773318. Epub 2020 Jun 4.
4
Effect of extracellular polymer substances on the tetracycline removal during coagulation process.
Bioresour Technol. 2020 Aug;309:123316. doi: 10.1016/j.biortech.2020.123316. Epub 2020 Apr 6.
5
Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2.
Cell. 2020 May 14;181(4):894-904.e9. doi: 10.1016/j.cell.2020.03.045. Epub 2020 Apr 9.
6
Therapeutic Potential for Tetracyclines in the Treatment of COVID-19.
Pharmacotherapy. 2020 May;40(5):487-488. doi: 10.1002/phar.2395. Epub 2020 May 4.
7
Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.
Nature. 2020 May;581(7807):215-220. doi: 10.1038/s41586-020-2180-5. Epub 2020 Mar 30.
8
Thermodynamics, cooperativity and stability of the tetracycline repressor (TetR) upon tetracycline binding.
Biochim Biophys Acta Proteins Proteom. 2020 Jun;1868(6):140404. doi: 10.1016/j.bbapap.2020.140404. Epub 2020 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验