Suppr超能文献

人工智能在识别初级保健中的肝纤维化患者方面优于基于血液的标准评分。

Artificial intelligence outperforms standard blood-based scores in identifying liver fibrosis patients in primary care.

机构信息

Applied AI and Data Science, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark.

Danish Centre for Clinical Artificial Intelligence (CAI-X), University of Southern Denmark and Odense University Hospital, Odense, Denmark.

出版信息

Sci Rep. 2022 Feb 21;12(1):2914. doi: 10.1038/s41598-022-06998-8.

Abstract

For years, hepatologists have been seeking non-invasive methods able to detect significant liver fibrosis. However, no previous algorithm using routine blood markers has proven to be clinically appropriate in primary care. We present a novel approach based on artificial intelligence, able to predict significant liver fibrosis in low-prevalence populations using routinely available patient data. We built six ensemble learning models (LiverAID) with different complexities using a prospective screening cohort of 3352 asymptomatic subjects. 463 patients were at a significant risk that justified performing a liver biopsy. Using an unseen hold-out dataset, we conducted a head-to-head comparison with conventional methods: standard blood-based indices (FIB-4, Forns and APRI) and transient elastography (TE). LiverAID models appropriately identified patients with significant liver stiffness (> 8 kPa) (AUC of 0.86, 0.89, 0.91, 0.92, 0.92 and 0.94, and NPV ≥ 0.98), and had a significantly superior discriminative ability (p < 0.01) than conventional blood-based indices (AUC = 0.60-0.76). Compared to TE, LiverAID models showed a good ability to rule out significant biopsy-assessed fibrosis stages. Given the ready availability of the required data and the relatively high performance, our artificial intelligence-based models are valuable screening tools that could be used clinically for early identification of patients with asymptomatic chronic liver diseases in primary care.

摘要

多年来,肝病学家一直在寻找能够检测出明显肝纤维化的非侵入性方法。然而,以前使用常规血液标志物的任何算法都未能在初级保健中证明具有临床适用性。我们提出了一种新的基于人工智能的方法,该方法能够使用常规可用的患者数据预测低患病率人群中的显著肝纤维化。我们使用前瞻性筛查队列中的 3352 名无症状受试者构建了六个具有不同复杂性的集成学习模型(LiverAID)。463 名患者存在进行肝活检的显著风险。使用未见过的保留数据集,我们与常规方法进行了直接比较:基于标准血液的指数(FIB-4、Forns 和 APRI)和瞬时弹性成像(TE)。LiverAID 模型适当地识别出具有显著肝硬度(>8kPa)的患者(AUC 为 0.86、0.89、0.91、0.92、0.92 和 0.94,NPV≥0.98),并且具有显著更高的鉴别能力(p<0.01)比常规基于血液的指数(AUC=0.60-0.76)。与 TE 相比,LiverAID 模型显示出很好的能力排除显著的活检评估纤维化阶段。鉴于所需数据的易于获得和相对较高的性能,我们的基于人工智能的模型是有价值的筛查工具,可在临床上用于在初级保健中早期识别无症状慢性肝病患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4461/8861108/ba1001bf0323/41598_2022_6998_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验