State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, China.
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
Nat Mater. 2022 Mar;21(3):359-365. doi: 10.1038/s41563-022-01195-4. Epub 2022 Feb 21.
Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and non-volatility. However, most existing ionogels suffer from low strength and toughness. Here, we report a simple one-step method to achieve ultra-tough and stretchable ionogels by randomly copolymerizing two common monomers with distinct solubility of the corresponding polymers in an ionic liquid. Copolymerization of acrylamide and acrylic acid in 1-ethyl-3-methylimidazolium ethyl sulfate results in a macroscopically homogeneous covalent network with in situ phase separation: a polymer-rich phase with hydrogen bonds that dissipate energy and toughen the ionogel; and an elastic solvent-rich phase that enables for large strain. These ionogels have high fracture strength (12.6 MPa), fracture energy (24 kJ m) and Young's modulus (46.5 MPa), while being highly stretchable (600% strain) and having self-healing and shape-memory properties. This concept can be applied to other monomers and ionic liquids, offering a promising way to tune ionogel microstructure and properties in situ during one-step polymerization.
离子凝胶由于其优异的离子导电性、热稳定性、电化学稳定性和非挥发性,是一种很有前途的用于技术设备的材料。然而,大多数现有的离子凝胶都存在强度和韧性低的问题。在这里,我们报告了一种简单的一步法,通过在离子液体中随机共聚两种具有不同聚合物溶解度的常见单体来实现超韧和可拉伸的离子凝胶。丙烯酰胺和丙烯酸在 1-乙基-3-甲基咪唑硫酸乙酯中的共聚导致了具有原位相分离的宏观均匀共价网络:聚合物富相具有氢键,可以耗散能量并增韧离子凝胶;而弹性溶剂富相则可以实现大应变。这些离子凝胶具有高断裂强度(12.6 MPa)、断裂能(24 kJ m)和杨氏模量(46.5 MPa),同时具有高拉伸性(600%应变)和自修复和形状记忆性能。该概念可应用于其他单体和离子液体,为在一步聚合过程中实时调节离子凝胶的微观结构和性能提供了一种很有前途的方法。