Valeri Cristina, Aloisio Angelo, Mummolo Stefano, Quinzi Vincenzo
Department of Life, Health and Environmental Sciences, Postgraduate School of Orthodontics, Università degli Studi dell'Aquila, Via Piazzale Salvatore Tommasi 1, Abruzzo, L'Aquila 67100, Italy.
Department of Civil, Environmental and Construction-Architecture Engineering, Università degli Studi dell'Aquila, Via Giovanni Gronchi n.18, L'Aquila 67100, Italy.
Int J Dent. 2022 Feb 12;2022:1637594. doi: 10.1155/2022/1637594. eCollection 2022.
The study aims at assessing the accuracy of the process of attachment bonding in aligner treatments. The analysis leads to the error estimation in the faithful reproduction of master model attachments using two types of transfer templates and two light-curing resin-based composites usually used in orthodontics.
The authors have used two transfer templates made of two different materials. The first, named Leone-biocompatible thermoforming material hard/soft, has a lower Young's modulus and is labelled as soft, while the other, named Leone-biocompatible thermoforming material, is marked as rigid. The resin-based composites possess different mechanical and rheological properties. Specifically, Transbond™ XT Light Cure Paste Adhesive, 3M has a higher viscosity than the TetricEvoflow, Ivoclar Vivadent, a flowable nanohybrid composite. The authors attempt to estimate the performance ranking between the four possible couples obtained by combining the two light-curing resin-based composites and transfer templates. Each combination was repeated in six models and compared with twelve master models, resulting in 36 total samples. A 3-D laser scanner is used to generate a digital model of each model. The comparison between digital models is the base for a comparative assessment in terms of relative and absolute error. The relative error is estimated using scalar performance indicators ranging from 0 to 1, where 1 indicates the optimum matching. The absolute error estimated from the mean square error between the coordinates of each digital model yields the reproduction accuracy in micrometer. Furthermore, the authors attempted to assess the error distribution by evaluating the point-by-point difference between the digital models.
This analysis aims at localizing the sources of error in the considered models. The use of Transbond™ XT Light Cure Paste Adhesive, 3M with a rigid transfer template is always associated with significant accuracy and minor dispersion. However, in a few instances, using the soft template or the flowable resin-based composite can lead to bad performances. . The data processing bestowed the following performance ranking from the first with lower reproduction error to the last characterized by the worst performance: (1) attachments bonding with rigid template and Transbond™ XT Light Cure Paste Adhesive, 3M, (2) attachments bonding with soft template and Transbond™ XT Light Cure Paste Adhesive, 3M, (3) attachments bonding with rigid template and TetricEvoflow, Ivoclar Vivadent, and (4) attachments bonding with soft template and TetricEvoflow, Ivoclar Vivadent.
本研究旨在评估隐形矫治器治疗中附件粘结过程的准确性。通过使用两种类型的转移模板和两种正畸常用的光固化树脂基复合材料,分析在忠实复制主模型附件时的误差估计。
作者使用了由两种不同材料制成的两种转移模板。第一种名为Leone生物相容性热成型材料硬/软,杨氏模量较低,标记为软,而另一种名为Leone生物相容性热成型材料,标记为硬。树脂基复合材料具有不同的机械和流变性能。具体而言,3M公司的Transbond™ XT光固化糊剂粘合剂的粘度高于Ivoclar Vivadent公司的可流动纳米混合复合材料TetricEvoflow。作者试图估计通过组合两种光固化树脂基复合材料和转移模板得到的四种可能组合之间的性能排名。每种组合在六个模型中重复,并与十二个主模型进行比较,共得到36个样本。使用三维激光扫描仪生成每个模型的数字模型。数字模型之间的比较是进行相对和绝对误差比较评估的基础。相对误差使用范围从0到1的标量性能指标进行估计,其中1表示最佳匹配。根据每个数字模型坐标之间的均方误差估计的绝对误差以微米为单位得出复制精度。此外,作者试图通过评估数字模型之间的逐点差异来评估误差分布。
该分析旨在确定所考虑模型中的误差来源。使用3M公司的Transbond™ XT光固化糊剂粘合剂和硬转移模板始终具有较高的准确性和较小的离散度。然而,在少数情况下,使用软模板或可流动树脂基复合材料可能导致性能不佳。数据处理得出以下从复制误差较低的第一名到性能最差的最后一名的性能排名:(1)使用硬模板和3M公司的Transbond™ XT光固化糊剂粘合剂粘结附件,(2)使用软模板和3M公司的Transbond™ XT光固化糊剂粘合剂粘结附件,(3)使用硬模板和Ivoclar Vivadent公司的TetricEvoflow粘结附件,(4)使用软模板和Ivoclar Vivadent公司的TetricEvoflow粘结附件。