Suppr超能文献

中国和印度碳排放的影响因素及其趋势:一种机器学习方法。

Influencing factors of carbon emissions and their trends in China and India: a machine learning method.

机构信息

School of Economics and Management, China University of Geosciences, Wuhan, China.

School of Geography and Information Engineering, China University of Geosciences, Wuhan, China.

出版信息

Environ Sci Pollut Res Int. 2022 Jul;29(32):48424-48437. doi: 10.1007/s11356-022-18711-3. Epub 2022 Feb 22.

Abstract

China and India are the largest coal consumers and the most populated countries in the world. With industrial and population growth, the need for energy has increased, which has inevitably led to an increase in carbon dioxide (CO) emissions because both countries depend on fossil fuel consumption. This paper investigates the impact of energy consumption, financial development (FD), gross domestic product (GDP), population, and renewable energy on CO emissions. The study applies the long short-term memory (LSTM) method, a novel machine learning (ML) approach, to examine which influencing driver has the greatest and smallest impact on CO emissions; correspondingly, this study builds a model for CO emission reduction. Data collected between 1990 and 2014 were analyzed, and the results indicated that energy consumption had the greatest effect and renewable energy had the smallest impact on CO emissions in both countries. Subsequently, we increased the renewable energy coefficient by one and decreased the energy consumption coefficient by one while keeping all other factors constant, and the results predicted with the LSTM model confirmed the significant reduction in CO emissions. Finally, this study forecasted a CO emission trend, with a slowdown predicted in China by 2022; however, CO emission's reduction is not possible in India until 2023. These results suggest that shifting from nonrenewable to renewable sources and lowering coal consumption can reduce CO emissions without harming economic development.

摘要

中国和印度是世界上最大的煤炭消费国和人口最多的国家。随着工业和人口的增长,对能源的需求增加,这不可避免地导致二氧化碳(CO)排放增加,因为这两个国家都依赖化石燃料消耗。本文研究了能源消费、金融发展(FD)、国内生产总值(GDP)、人口和可再生能源对 CO 排放的影响。该研究采用长短期记忆(LSTM)方法,一种新颖的机器学习(ML)方法,来检查哪些影响因素对 CO 排放的影响最大和最小;相应地,本研究建立了一个 CO 减排模型。分析了 1990 年至 2014 年期间收集的数据,结果表明,在这两个国家,能源消费对 CO 排放的影响最大,可再生能源的影响最小。随后,我们在保持其他因素不变的情况下,将可再生能源系数增加 1,将能源消耗系数减少 1,LSTM 模型的预测结果证实了 CO 排放量的显著减少。最后,本研究预测了 CO 排放趋势,预计中国到 2022 年 CO 排放将放缓;然而,印度直到 2023 年才有可能减少 CO 排放。这些结果表明,从非可再生能源向可再生能源转变和降低煤炭消耗可以在不损害经济发展的情况下减少 CO 排放。

相似文献

1
Influencing factors of carbon emissions and their trends in China and India: a machine learning method.
Environ Sci Pollut Res Int. 2022 Jul;29(32):48424-48437. doi: 10.1007/s11356-022-18711-3. Epub 2022 Feb 22.
3
The impact of natural gas and renewable energy consumption on CO emissions and economic growth in two major emerging market economies.
Environ Sci Pollut Res Int. 2019 Jul;26(20):20893-20907. doi: 10.1007/s11356-019-05388-4. Epub 2019 May 21.
5
Time-varying impact of income and fossil fuel consumption on CO emissions in India.
Environ Sci Pollut Res Int. 2023 Dec;30(58):121960-121982. doi: 10.1007/s11356-023-30806-z. Epub 2023 Nov 14.
7
Renewable energy, carbon emissions, and economic growth in 24 Asian countries: evidence from panel cointegration analysis.
Environ Sci Pollut Res Int. 2017 Nov;24(33):26006-26015. doi: 10.1007/s11356-017-0259-9. Epub 2017 Sep 23.
8
Investigating the association among CO2 emissions, renewable and non-renewable energy consumption in Uzbekistan: an ARDL approach.
Environ Sci Pollut Res Int. 2023 Mar;30(14):39666-39679. doi: 10.1007/s11356-022-25023-z. Epub 2023 Jan 4.
9
The relationship between renewable energy consumption, carbon emissions, output, and export in industrial and agricultural sectors: evidence from China.
Environ Sci Pollut Res Int. 2022 Sep;29(42):63081-63098. doi: 10.1007/s11356-022-20141-0. Epub 2022 Apr 22.
10
Renewable and nonrenewable energy consumption, economic growth, and CO emissions in Eastern and South African countries: the role of informality.
Environ Sci Pollut Res Int. 2023 Jun;30(28):72575-72587. doi: 10.1007/s11356-023-27549-2. Epub 2023 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验