Begum Arju Manara, Mobin Mahadee Al
Bangladesh Institute of Governance and Management, Dhaka, 1207, Bangladesh.
Sci Rep. 2025 Jun 3;15(1):19469. doi: 10.1038/s41598-025-04236-5.
The continued rise in global carbon dioxide ([Formula: see text]) emissions challenges international climate policy, particularly the goals of the Paris Agreement. This study forecasts [Formula: see text] emissions through 2030 for the eleven highest-emitting nations-China, the United States, India, Russia, Japan, Iran, Indonesia, Saudi Arabia, Canada, South Korea, and Germany-while assessing their progress toward Nationally Determined Contributions (NDCs). Using data from 1990 to 2023, we apply a robust data pipeline comprised of six machine learning models and sequential squeeze feature selection incorporating eleven economic, industrial, and energy consumption variables. We have modelled the scenario with an average prediction accuracy of 96.21%. Results indicate that Russia is on track to exceed its reduction targets, while Germany and the United States will fall slightly short. China, India, Japan, Canada, South Korea, and Indonesia are projected to miss their commitments by significant margins. At the same time, Iran and Saudi Arabia are expected to increase emissions rather than reduce them. These findings highlight the need for strengthened energy efficiency policies, expanded renewable energy adoption, enhanced carbon pricing mechanisms, and stricter regulatory enforcement. Emerging economies require international collaboration and investment to support low-carbon transitions. This study provides a data-driven assessment of emission trajectories, emphasizing the urgency of coordinated global action, technological innovation, and adaptive policy measures to align emissions with the 1.5[Formula: see text] warming threshold. This work represents a novel integration of multivariate machine learning modelling, data-driven feature selection, and policy-oriented emission forecasts, establishing new methodological and empirical benchmarks in climate analytics.
全球二氧化碳([公式:见原文])排放量持续上升给国际气候政策带来了挑战,尤其是《巴黎协定》的目标。本研究预测了十一个排放大国(中国、美国、印度、俄罗斯、日本、伊朗、印度尼西亚、沙特阿拉伯、加拿大、韩国和德国)到2030年的[公式:见原文]排放量,同时评估它们在国家自主贡献(NDCs)方面的进展。利用1990年至2023年的数据,我们应用了一个强大的数据管道,该管道由六个机器学习模型和包含十一个经济、工业和能源消耗变量的顺序挤压特征选择组成。我们对该情景进行了建模,平均预测准确率为96.21%。结果表明,俄罗斯有望超过其减排目标,而德国和美国将略未达标。预计中国、印度、日本、加拿大、韩国和印度尼西亚将大幅错过其承诺目标。与此同时,预计伊朗和沙特阿拉伯的排放量将增加而非减少。这些发现凸显了加强能源效率政策、扩大可再生能源应用、增强碳定价机制以及加强监管执法的必要性。新兴经济体需要国际合作和投资来支持低碳转型。本研究提供了一个基于数据的排放轨迹评估,强调了全球协调行动、技术创新以及适应性政策措施以使排放量与1.5[公式:见原文]升温阈值保持一致的紧迫性。这项工作代表了多变量机器学习建模、数据驱动的特征选择和面向政策的排放预测的新颖整合,在气候分析中建立了新的方法和实证基准。