Breit Hanns-Christian, Vosshenrich Jan, Bach Michael, Merkle Elmar M
Klinik für Radiologie und Nuklearmedizin, Universitätsspital Basel, Petersgraben 4, 4031, Basel, Schweiz.
Radiologe. 2022 May;62(5):394-399. doi: 10.1007/s00117-022-00967-y. Epub 2022 Feb 22.
Low-field magnetic resonance imaging (MRI) is experiencing a renaissance due to technical innovations. The new-generation devices offer new applications for imaging and a possible solution to increasing cost pressures in the healthcare system.
Effects of field strength on technique, physics, image acquisition, and diagnostic quality of examinations are presented.
Important basic physical parameters for image acquisition and quality are summarized. Initial clinical experience with a new 0.55 T low-field scanner is presented.
Field strengths that are lower than the currently used 1.5 T and 3 T field strengths are characterized by an expected lower signal-to-noise ratio in image acquisition. Whether this is a diagnostic limitation needs to be evaluated in studies, as there are several options to offset this perceived drawback, including increasing measurement time or artificial intelligence (AI) postprocessing techniques. In addition, it is necessary to meticulously investigate whether low-field systems allow diagnostically adequate image quality to be achieved in different body regions and different disease entities. Initial studies in our clinic are promising and show, for example, diagnostic quality without relevant loss of time for examinations of the lumbar spine. Advantages of low-field MRI include reduced susceptibility artifacts when imaging the lungs and in patients with metallic implants.
Low-field scanners offer a variety of new fields of application with field strength-related advantages. In most other clinical examination fields, at least diagnostic quality can be expected.
由于技术创新,低场磁共振成像(MRI)正在复兴。新一代设备为成像提供了新的应用,并可能解决医疗保健系统中日益增加的成本压力问题。
介绍场强对成像技术、物理学、图像采集和检查诊断质量的影响。
总结了图像采集和质量的重要基本物理参数。介绍了新型0.55 T低场扫描仪的初步临床经验。
低于目前常用的1.5 T和3 T场强的场强在图像采集中的特点是预期的较低信噪比。这是否是一种诊断限制需要在研究中进行评估,因为有几种方法可以抵消这种明显的缺点,包括增加测量时间或人工智能(AI)后处理技术。此外,有必要仔细研究低场系统是否能在不同身体部位和不同疾病实体中实现诊断足够的图像质量。我们诊所的初步研究很有前景,例如,对腰椎检查显示出诊断质量且没有相关的时间损失。低场MRI的优点包括在肺部成像和有金属植入物的患者中减少了磁化率伪影。
低场扫描仪提供了各种具有场强相关优势的新应用领域。在大多数其他临床检查领域,至少可以预期有诊断质量。