Autonomic Unit and Hypertension Unit, Internal Medicine Division, Department of Medical Sciences, University of Turin, via Genova 3, 10126, Turin, Italy.
Department of Neurology, Wexner Medical Center, Ohio State University, Columbus, OH, USA.
J Neurol. 2022 Jul;269(7):3833-3840. doi: 10.1007/s00415-022-11020-2. Epub 2022 Feb 22.
Autonomic failure (AF) complicates Parkinson's disease (PD) in one-third of cases, resulting in complex blood pressure (BP) abnormalities. While autonomic testing represents the diagnostic gold standard for AF, accessibility to this examination remains limited to a few tertiary referral centers.
The present study sought to investigate the accuracy of a machine learning algorithm applied to 24-h ambulatory BP monitoring (ABPM) as a tool to facilitate the diagnosis of AF in patients with PD.
Consecutive PD patients naïve to vasoactive medications underwent 24 h-ABPM and autonomic testing. The diagnostic accuracy of a Linear Discriminant Analysis (LDA) model exploiting ABPM parameters was compared to autonomic testing (as per a modified version of the Composite Autonomic Symptom Score not including the sudomotor score) in the diagnosis of AF.
The study population consisted of n = 80 PD patients (33% female) with a mean age of 64 ± 10 years old and disease duration of 6.2 ± 4 years. The prevalence of AF at the autonomic testing was 36%. The LDA model showed 91.3% accuracy (98.0% specificity, 79.3% sensitivity) in predicting AF, significantly higher than any of the ABPM variables considered individually (hypotensive episodes = 82%; reverse dipping = 79%; awakening hypotension = 74%).
LDA model based on 24-h ABPM parameters can effectively predict AF, allowing greater accessibility to an accurate and easy to administer test for AF. Potential applications range from systematic AF screening to monitoring and treating blood pressure dysregulation caused by PD and other neurodegenerative disorders.
自主神经功能衰竭(AF)在三分之一的帕金森病(PD)患者中并发,导致复杂的血压(BP)异常。虽然自主神经测试是 AF 的诊断金标准,但这种检查的可及性仍然仅限于少数三级转诊中心。
本研究旨在探讨应用机器学习算法对 24 小时动态血压监测(ABPM)进行分析,作为辅助 PD 患者 AF 诊断的工具的准确性。
连续接受血管活性药物治疗的 PD 患者进行 24 小时 ABPM 和自主神经测试。比较线性判别分析(LDA)模型(利用 ABPM 参数)与自主神经测试(不包括自主神经测试中的出汗评分的改良综合自主症状评分)在诊断 AF 中的准确性。
研究人群包括 n = 80 名 PD 患者(33%为女性),平均年龄 64 ± 10 岁,病程 6.2 ± 4 年。自主神经测试中 AF 的患病率为 36%。LDA 模型在预测 AF 方面的准确率为 91.3%(特异性 98.0%,敏感性 79.3%),明显高于单独考虑的任何 ABPM 变量(低血压发作=82%;反向杓型=79%;觉醒性低血压=74%)。
基于 24 小时 ABPM 参数的 LDA 模型可有效预测 AF,使更广泛地应用准确且易于实施的 AF 测试成为可能。潜在的应用范围从系统性 AF 筛查到监测和治疗 PD 及其他神经退行性疾病引起的血压失调。