Reisbick Spencer A, Han Myung-Geun, Liu Chuhang, Zhao Yubin, Montgomery Eric, Jing Chunguang, Gokhale Vikrant J, Gorman Jason J, Lau June W, Zhu Yimei
Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA; Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA.
Ultramicroscopy. 2022 May;235:113497. doi: 10.1016/j.ultramic.2022.113497. Epub 2022 Feb 17.
The development of ultrafast electron microscopy (UEM), specifically stroboscopic imaging, has brought the study of structural dynamics to a new level by overcoming the spatial limitations of ultrafast spectroscopy and the temporal restrictions of traditional TEM simultaneously. Combining the concepts governing both techniques has enabled direct visualization of dynamics with spatiotemporal resolutions in the picosecond-nanometer regime. Here, we push the limits of imaging using a pulsed electron beam via RF induced transverse deflection based on the newly developed 200 keV frequency-tunable strip-line pulser. We demonstrate a 0.2 nm spatial resolution and elucidation of magnetic spin induction maps using the phase-microscopy method. We also present beam coherence measurements and expand our study using the breathing modes of a silicon interdigitated comb under RF excitation which achieves improved temporal synchronization between the electron pulse-train and electric field. A new RF holder has also been developed with impedance matching to the RF signal to minimize transmission power loss to samples and its performance is compared with a conventional sample holder.
超快电子显微镜(UEM)的发展,特别是频闪成像技术,通过同时克服超快光谱的空间限制和传统透射电子显微镜(TEM)的时间限制,将结构动力学的研究提升到了一个新的水平。将这两种技术的相关概念相结合,能够以皮秒-纳米级的时空分辨率直接可视化动力学过程。在此,我们基于新开发的200 keV频率可调带状线脉冲发生器,通过射频感应横向偏转,利用脉冲电子束推动成像极限。我们展示了0.2 nm的空间分辨率,并使用相显微镜方法阐明了磁自旋感应图。我们还进行了束流相干性测量,并利用射频激发下硅叉指梳的呼吸模式扩展了我们的研究,该模式实现了电子脉冲序列与电场之间更好的时间同步。还开发了一种新的射频样品架,其与射频信号实现了阻抗匹配,以尽量减少传输到样品的功率损失,并将其性能与传统样品架进行了比较。