Jing Chunguang, Zhu Yimei, Liu Ao, Schliep Karl, Fu Xuewen, Zhao Yubin, Montgomery Eric, Rush Wade, Kanareykin Alexei, Katz Michael, Lau June
Euclid Techlabs, LLC, 365 Remington Blvd, Bolingbrook, USA.
Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973, USA.
Ultramicroscopy. 2019 Dec;207:112829. doi: 10.1016/j.ultramic.2019.112829. Epub 2019 Aug 26.
For two decades, time-resolved transmission electron microscopes (TEM) have relied on pulsed-laser photoemission to generate electron bunches to explore sub-microsecond to sub-picosecond dynamics. Despite the vast successes of photoemission time-resolved TEMs, laser-based systems are inherently complex, thus tend not to be turn-key. In this paper, we report on the successful retrofit of a commercial 200 keV TEM, without an external laser, capable of producing continuously tunable pulsed electron beams with repetition rates from 0.1 GHz up to 12 GHz and a tunable bunch length from tens of nanoseconds down to 10 ps. This innovation enables temporal access into previously inaccessible regimes: i.e., high repetition rate stroboscopic experiments. Combination of a pair of RF-driven traveling wave stripline elements, quadrupole magnets, and a variable beam aperture enables operation of the instrument in (1) continuous waveform (CW) mode as though the instrument was never modified (i.e. convention TEM operation mode, where the electrons from the emission cathode randomly arrive at the sample without resolvable time information), (2) stroboscopic (pump-probe) mode, and (3) pulsed beam mode for dose rate sensitive materials. To assess the effect of a pulsed beam on image quality, we examined Au nanoparticles using bright field, high-resolution TEM imaging and selected area diffraction in both continuous and pulsed-beam mode. In comparison of conventional TEMs, the add-on beam pulser enables the observation of ultrafast dynamic behavior in materials that are reversible under synchronized excitation.
二十年来,时间分辨透射电子显微镜(TEM)一直依靠脉冲激光光发射来产生电子束,以探索亚微秒至亚皮秒的动力学过程。尽管光发射时间分辨TEM取得了巨大成功,但基于激光的系统本质上很复杂,因此往往不是交钥匙工程。在本文中,我们报告了对一台商用200 keV TEM的成功改造,该改造无需外部激光,能够产生重复频率从0.1 GHz到12 GHz连续可调的脉冲电子束,且脉冲长度可从几十纳秒调至10 ps。这一创新使得能够在时间上进入以前无法进入的区域:即高重复频率频闪实验。一对射频驱动的行波带状线元件、四极磁体和可变束孔径的组合,使该仪器能够以以下模式运行:(1)连续波形(CW)模式,就好像仪器从未被修改过一样(即传统TEM运行模式,发射阴极发射的电子随机到达样品处,没有可分辨的时间信息);(2)频闪(泵浦-探测)模式;(3)针对剂量率敏感材料的脉冲束模式。为了评估脉冲束对图像质量的影响,我们在连续和脉冲束模式下,使用明场、高分辨率TEM成像和选区衍射对金纳米颗粒进行了研究。与传统TEM相比,附加的束脉冲器能够观察到在同步激发下可逆的材料中的超快动态行为。