Suppr超能文献

海马齿状回生物网络中“胜者通吃”竞争的动力学起源

Dynamical origin for winner-take-all competition in a biological network of the hippocampal dentate gyrus.

机构信息

Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu 42411, Korea.

出版信息

Phys Rev E. 2022 Jan;105(1-1):014418. doi: 10.1103/PhysRevE.105.014418.

Abstract

We consider a biological network of the hippocampal dentate gyrus (DG). Computational models suggest that the DG would be a preprocessor for pattern separation (i.e., a process transforming a set of similar input patterns into distinct nonoverlapping output patterns) which could facilitate pattern storage and retrieval in the CA3 area of the hippocampus. The main encoding cells in the DG are the granule cells (GCs) which receive the input from the entorhinal cortex (EC) and send their output to the CA3. We note that the activation degree of GCs is very low (∼5%). This sparsity has been thought to enhance the pattern separation. We investigate the dynamical origin for winner-take-all (WTA) competition which leads to sparse activation of the GCs. The whole GCs are grouped into lamellar clusters. In each cluster, there is one inhibitory (I) basket cell (BC) along with excitatory (E) GCs. There are three kinds of external inputs into the GCs: the direct excitatory EC input; the indirect feedforward inhibitory EC input, mediated by the HIPP (hilar perforant path-associated) cells; and the excitatory input from the hilar mossy cells (MCs). The firing activities of the GCs are determined via competition between the external E and I inputs. The E-I conductance ratio R_{E-I}^{(con)}^{} (given by the time average of the ratio of the external E to I conductances) may represent well the degree of such external E-I input competition. It is thus found that GCs become active when their R_{E-I}^{(con)}^{} is larger than a threshold R_{th}^{}, and then the mean firing rates of the active GCs are strongly correlated with R_{E-I}^{(con)}^{}. In each cluster, the feedback inhibition from the BC may select the winner GCs. GCs with larger R_{E-I}^{(con)}^{} than the threshold R_{th}^{} survive, and they become winners; all the other GCs with smaller R_{E-I}^{(con)}^{*} become silent. In this way, WTA competition occurs via competition between the firing activity of the GCs and the feedback inhibition from the BC in each cluster. Finally, we also study the effects of MC death and adult-born immature GCs on the WTA competition.

摘要

我们考虑了海马齿状回(DG)的生物神经网络。计算模型表明,DG 将是模式分离的预处理器(即,将一组相似的输入模式转换为不重叠的输出模式的过程),这有助于在海马 CA3 区存储和检索模式。DG 的主要编码细胞是颗粒细胞(GCs),它们接收来自内嗅皮层(EC)的输入,并将其输出发送到 CA3。我们注意到 GCs 的激活程度非常低(约 5%)。这种稀疏性被认为可以增强模式分离。我们研究了导致 GCs 稀疏激活的胜者全拿(WTA)竞争的动力学起源。整个 GCs 被分为层状簇。在每个簇中,都有一个抑制性(I)篮状细胞(BC)和兴奋性(E)GCs。GCs 有三种外部输入:直接兴奋性 EC 输入;间接前馈抑制性 EC 输入,由 HIPP(齿状门控路径相关)细胞介导;以及来自海马苔藓细胞(MCs)的兴奋性输入。GCs 的放电活动通过外部 E 和 I 输入之间的竞争来决定。E-I 电导比 R_{E-I}^{(con)}^{}(由外部 E 与 I 电导之比的时间平均值给出)可以很好地代表这种外部 E-I 输入竞争的程度。因此,发现当 GCs 的 R_{E-I}^{(con)}^{}大于阈值 R_{th}^{}时,GCs 会变得活跃,然后活跃 GCs 的平均放电率与 R_{E-I}^{(con)}^{}强烈相关。在每个簇中,来自 BC 的反馈抑制作用可能会选择获胜的 GCs。具有大于阈值 R_{th}^{}的 R_{E-I}^{(con)}^{}的 GCs 存活下来,成为胜者;所有其他具有较小 R_{E-I}^{(con)}^{*}的 GCs 则保持沉默。通过这种方式,通过每个簇中 GC 的放电活动与 BC 的反馈抑制作用之间的竞争发生 WTA 竞争。最后,我们还研究了 MC 死亡和成年新生不成熟 GCs 对 WTA 竞争的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验