Suppr超能文献

海马齿状回的一百多万神经元模型:时空网络动力学对拓扑结构的依赖性。

A million-plus neuron model of the hippocampal dentate gyrus: Dependency of spatio-temporal network dynamics on topography.

作者信息

Hendrickson Phillip J, Yu Gene J, Song Dong, Berger Theodore W

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4713-6. doi: 10.1109/EMBC.2015.7319446.

Abstract

This paper describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust, non-random pattern of spiking best described as spatiotemporal "clustering". To identify the network property or properties responsible for generating such firing "clusters", we progressively eliminated from the model key mechanisms such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatio-temporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as "functional units" that organize the processing of entorhinal signals.

摘要

本文描述了一个包含一百多万个颗粒细胞的大鼠海马齿状回的房室模型,其中包括来自内嗅皮层的兴奋性穿通路径输入,以及来自齿状中间神经元的前馈和反馈抑制性输入。该模型包括颗粒细胞的形态学和生物物理学特性,这些特性是通过实验确定的,同时分别具有谷氨酸能的AMPA样兴奋性突触后电位(EPSP)和GABA能的GABAA样抑制性突触后电位(IPSP)突触兴奋性和抑制性输入。每个颗粒细胞由大约200个房室组成,这些房室具有分布在整个胞体和树突区域的被动和主动电导。对内嗅皮层兴奋性输入的建模是基于轴突运输研究,这些研究记录了内侧和外侧内嗅皮层亚区域投射的拓扑组织,以及谷氨酸能输入到齿状回分布的其他重要细节。结果表明,当内侧和外侧内嗅皮层神经元保持泊松随机放电时,在这个百万细胞网络中,齿状颗粒细胞表现出一种强烈的、非随机的放电模式,这种模式最好被描述为时空“聚类”。为了确定负责产生这种放电“簇”的一个或多个网络特性,我们逐步从模型中消除关键机制,如前馈和反馈抑制、节律性爆发放电的内在膜特性,和/或内嗅传入纤维的拓扑组织。研究结果最终确定输入的拓扑组织是产生聚类放电时空分布的关键因素。这些结果揭示了以前未被认识到的齿状回穿通路径传入纤维的功能组织:颗粒细胞活动的拓扑依赖性簇作为“功能单元”,组织内嗅信号的处理。

相似文献

1
A million-plus neuron model of the hippocampal dentate gyrus: Dependency of spatio-temporal network dynamics on topography.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4713-6. doi: 10.1109/EMBC.2015.7319446.
2
A Million-Plus Neuron Model of the Hippocampal Dentate Gyrus: Critical Role for Topography in Determining Spatiotemporal Network Dynamics.
IEEE Trans Biomed Eng. 2016 Jan;63(1):199-209. doi: 10.1109/TBME.2015.2445771. Epub 2015 Jun 16.
6
The CA3 "backprojection" to the dentate gyrus.
Prog Brain Res. 2007;163:627-37. doi: 10.1016/S0079-6123(07)63034-9.
7
Preferential Targeting of Lateral Entorhinal Inputs onto Newly Integrated Granule Cells.
J Neurosci. 2018 Jun 27;38(26):5843-5853. doi: 10.1523/JNEUROSCI.1737-17.2018. Epub 2018 May 23.
8
10
Interplay of Entorhinal Input and Local Inhibitory Network in the Hippocampus at the Origin of Slow Inhibition in Granule Cells.
J Neurosci. 2019 Aug 14;39(33):6399-6413. doi: 10.1523/JNEUROSCI.2976-18.2019. Epub 2019 Jun 10.

引用本文的文献

1
Robust Resting-State Dynamics in a Large-Scale Spiking Neural Network Model of Area CA3 in the Mouse Hippocampus.
Cognit Comput. 2023 Jul;15(4):1190-1210. doi: 10.1007/s12559-021-09954-2. Epub 2022 Jan 28.
2
A Glutamatergic Spine Model to Enable Multi-Scale Modeling of Nonlinear Calcium Dynamics.
Front Comput Neurosci. 2018 Jul 27;12:58. doi: 10.3389/fncom.2018.00058. eCollection 2018.

本文引用的文献

1
Towards a large-scale biologically realistic model of the hippocampus.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4595-8. doi: 10.1109/EMBC.2012.6346990.
2
Implementation of topographically constrained connectivity for a large-scale biologically realistic model of the hippocampus.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1358-61. doi: 10.1109/EMBC.2012.6346190.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验