Albers Tony, Radons Günter
Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany.
Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany and Institute of Mechatronics, 09126 Chemnitz, Germany.
Phys Rev E. 2022 Jan;105(1-1):014113. doi: 10.1103/PhysRevE.105.014113.
We investigate the nonergodicity of the generalized Lévy walk introduced by Shlesinger et al. [Phys. Rev. Lett. 58, 1100 (1987)PRLTAO0031-900710.1103/PhysRevLett.58.1100] with respect to the squared displacements. We present detailed analytical derivations of our previous findings outlined in a recent letter [Phys. Rev. Lett. 120, 104501 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.104501], give detailed interpretations, and in particular emphasize three surprising results. First, we find that the mean-squared displacements can diverge for a certain range of parameter values. Second, we show that an ensemble of trajectories can spread subdiffusively, whereas individual time-averaged squared displacements show superdiffusion. Third, we recognize that the fluctuations of the time-averaged squared displacements can become so large that the ergodicity breaking parameter diverges, what we call infinitely strong ergodicity breaking. This phenomenon can also occur for paramter values where the lag-time dependence of the mean-squared displacements is linear indicating normal diffusion. In order to numerically determine the full distribution of time-averaged squared displacements, we use importance sampling. For an embedding of our findings into existing results in the literature, we define a more general model which we call variable speed generalized Lévy walk and which includes well-known models from the literature as special cases such as the space-time coupled Lévy flight or the anomalous Drude model. We discuss and interpret our findings regarding the generalized Lévy walk in detail and compare them with the nonergodicity of the other space-time coupled models following from the more general model.
我们研究了施莱辛格等人[《物理评论快报》58, 1100 (1987年)PRLTAO0031 - 900710.1103/PhysRevLett.58.1100]引入的广义列维游走关于平方位移的非遍历性。我们给出了近期一篇快报[《物理评论快报》120, 104501 (2018年)PRLTAO0031 - 900710.1103/PhysRevLett.120.104501]中概述的我们先前研究结果的详细解析推导,给出了详细解释,尤其强调了三个惊人的结果。第一,我们发现对于一定范围的参数值,平均平方位移可能发散。第二,我们表明轨迹系综可以亚扩散地扩展,而单个时间平均平方位移显示超扩散。第三,我们认识到时间平均平方位移的涨落可能变得如此之大,以至于遍历性破坏参数发散,我们称之为无限强遍历性破坏。这种现象也可能发生在平均平方位移的滞后时间依赖性为线性(表明正常扩散)的参数值情况下。为了数值确定时间平均平方位移的完整分布,我们使用重要性抽样。为了将我们的研究结果纳入文献中的现有结果,我们定义了一个更一般的模型,我们称之为变速广义列维游走,它包含文献中的一些知名模型作为特殊情况,如时空耦合列维飞行或反常德鲁德模型。我们详细讨论并解释了关于广义列维游走的研究结果,并将它们与从更一般模型得出的其他时空耦合模型的非遍历性进行比较。