Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany.
Phys Rev Lett. 2018 Mar 9;120(10):104501. doi: 10.1103/PhysRevLett.120.104501.
We provide analytical results for the ensemble-averaged and time-averaged squared displacement, and the randomness of the latter, in the full two-dimensional parameter space of the d-dimensional generalized Lévy walk introduced by Shlesinger et al. [Phys. Rev. Lett. 58, 1100 (1987)PRLTAO0031-900710.1103/PhysRevLett.58.1100]. In certain regions of the parameter plane, we obtain surprising results such as the divergence of the mean-squared displacements, the divergence of the ergodicity breaking parameter despite a finite mean-squared displacement, and subdiffusion which appears superdiffusive when one only considers time averages.
我们提供了 Shlesinger 等人提出的 d 维广义 Lévy 游走的整体平均和时间平均平方位移及其随机性的分析结果,这些结果在二维参数空间中[Phys. Rev. Lett. 58, 1100 (1987)PRLTAO0031-900710.1103/PhysRevLett.58.1100]。在参数平面的某些区域,我们得到了令人惊讶的结果,例如均方位移的发散,尽管均方位移有限,但破坏遍历性的参数的发散,以及当仅考虑时间平均值时表现为超扩散的亚扩散。