Suppr超能文献

微流控流中相互作用的液滴聚集体的惯性自组装动力学。

Inertial Self-Assembly Dynamics of Interacting Droplet Ensembles in Microfluidic Flows.

机构信息

Center for Biophysics and Quantitative Biology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States.

Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States.

出版信息

Anal Chem. 2022 Mar 8;94(9):3978-3986. doi: 10.1021/acs.analchem.1c05116. Epub 2022 Feb 23.

Abstract

The multiphase flow of droplets is widespread and used for both biological and nonbiological applications alike. However, the ensemble interactions of such systems are inherently nonlinear and complex, compounded by interfacial effects, making it a difficult many-body problem. In comparison, the self-assembly dynamics of solid particles in flow have long been studied and exploited in the field of inertial microfluidics. Here, we report novel self-assembly dynamics of liquid drops in microfluidic channels that contrast starkly with the established paradigm of inertial microfluidics, which stipulates that higher inertia leads to better spatial ordering. Instead, we find that ordering can be negatively correlated with inertia, while Dean flow can achieve long-range spatial periodicity on length scales at least 3 orders of magnitude greater than the drop diameter. Experimentally, we decouple droplet generation from ordering, enabling independent and systematic variation of key parameters, especially in ranges practical to droplet microfluidics. We find the inertia-dependent emergence of preferred drop separations and show that surfactant effects can influence the longitudinal ordering of multidrop arrays. The dynamics we describe have immediate utility to droplet microfluidics, where the ability to order drops is key to the streamlined integration of on-chip incubation with deterministic drop manipulation downstream─two important functions for biological assays. To this end, we demonstrate the use of passive inertial drop self-assembly to combine a delay line with picoinjection. These results not only present a largely unexplored direction for inertial microfluidics but also show the practical benefit of its unification with the versatile field of droplet microfluidics.

摘要

液滴的多相流广泛存在于生物和非生物应用中。然而,此类系统的总体相互作用本质上是非线性和复杂的,再加上界面效应,使得其成为一个难以处理的多体问题。相比之下,固体颗粒在流动中的自组装动力学在惯性微流控领域已经得到了长期的研究和应用。在这里,我们报告了在微流道中液滴的新颖自组装动力学,这与惯性微流控的既定范式形成鲜明对比,该范式规定较高的惯性会导致更好的空间有序性。相反,我们发现有序性可能与惯性呈负相关,而Dean 流可以在至少比液滴直径大 3 个数量级的长度尺度上实现长程空间周期性。在实验中,我们将液滴生成与有序化过程分离,从而能够独立且系统地改变关键参数,尤其是在适用于液滴微流控的范围内。我们发现惯性依赖性的液滴分离偏好的出现,并表明表面活性剂的影响会影响多液滴阵列的纵向有序性。我们描述的动力学对液滴微流控具有直接的应用价值,因为有序液滴的能力是实现芯片孵育与下游确定性液滴操作的流线型集成的关键——这是生物分析的两个重要功能。为此,我们展示了使用被动惯性液滴自组装将延迟线与皮升注射结合使用。这些结果不仅为惯性微流控提供了一个很大程度上未被探索的方向,还展示了将其与多功能的液滴微流控领域统一的实际益处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验