IEEE Trans Vis Comput Graph. 2023 Jul;29(7):3158-3168. doi: 10.1109/TVCG.2022.3153501. Epub 2023 May 26.
In this paper, we present TeethGNN, a novel 3D tooth segmentation method based on graph neural networks (GNNs). Given a mesh-represented 3D dental model in non-euclidean domain, our method outputs accurate and fine-grained separation of each individual tooth robust to scanning noise, foreign matters (e.g., bubbles, dental accessories, etc.), and even severe malocclusion. Unlike previous CNN-based methods that bypass handling non-euclidean mesh data by reshaping hand-crafted geometric features into regular grids, we explore the non-uniform and irregular structure of mesh itself in its dual space and exploit graph neural networks for effective geometric feature learning. To address the crowded teeth issues and incomplete segmentation that commonly exist in previous methods, we design a two-branch network, one of which predicts a segmentation label for each facet while the other regresses each facet an offset away from its tooth centroid. Clustering are later conducted on offset-shifted locations, enabling both the separation of adjoining teeth and the adjustment of incompletely segmented teeth. Exploiting GNN for directly processing mesh data frees us from extracting hand-crafted feature, and largely speeds up the inference procedure. Extensive experiments have shown that our method achieves the new state-of-the-art results for teeth segmentation and outperforms previous methods both quantitatively and qualitatively.
本文提出了一种基于图神经网络(GNN)的新型 3D 牙齿分割方法 TeethGNN。给定非欧几里得域中表示的 3D 牙齿网格模型,我们的方法能够准确且精细地分割每个牙齿,对扫描噪声、异物(如气泡、牙齿附件等)具有鲁棒性,甚至对严重的错颌畸形也具有鲁棒性。与之前基于 CNN 的方法不同,后者通过将手工制作的几何特征重塑为规则网格来绕过处理非欧几里得网格数据,我们在网格的对偶空间中探索网格本身的非均匀和不规则结构,并利用图神经网络进行有效的几何特征学习。为了解决以前方法中普遍存在的牙齿拥挤和不完整分割问题,我们设计了一个两分支网络,其中一个分支预测每个面的分割标签,另一个分支回归每个面相对于其牙齿质心的偏移量。然后在偏移位置上进行聚类,从而实现相邻牙齿的分离和不完整分割牙齿的调整。利用 GNN 直接处理网格数据,我们无需提取手工制作的特征,并且大大加快了推理过程。大量实验表明,我们的方法在牙齿分割方面取得了新的最先进的结果,在定量和定性方面都优于以前的方法。