Suppr超能文献

基于Transformer的通过点云区域划分进行三维牙齿分割

Transformer based 3D tooth segmentation via point cloud region partition.

作者信息

Wu You, Yan Hongping, Ding Kun

机构信息

School of Information Engineering, China University of Geosciences(Beijing), Beijing, 100083, China.

State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS), Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.

出版信息

Sci Rep. 2024 Nov 18;14(1):28513. doi: 10.1038/s41598-024-79485-x.

Abstract

Automatic and accurate tooth segmentation on 3D dental point clouds plays a pivotal role in computer-aided dentistry. Existing Transformer-based methods focus on aggregating local features, but fail to directly model global contexts due to memory limitations and high computational cost. In this paper, we propose a novel Transformer-based 3D tooth segmentation network, called PointRegion, which can process the entire point cloud at a low cost. Following a novel modeling of semantic segmentation that interprets the point cloud as a tessellation of learnable regions, we first design a RegionPartition module to partition the 3D point cloud into a certain number of regions and project these regions as embeddings in an effective way. Then, an offset-attention based RegionEncoder module is applied on all region embeddings to model global context among regions and predict the class logits for each region. Considering the irregularity and disorder of 3D point cloud data, a novel mechanism is proposed to build the point-to-region association to replace traditional convolutional operations. The mechanism, as a medium between points and regions, automatically learns the probabilities that each point belongs to its neighboring regions from the similarity between point and region features, achieving the goal of point-level segmentation. Since the number of regions is far less than the number of points, our proposed PointRegion model can leverage the capability of the global-based Transformer on large-scale point clouds with low computational cost and memory consumption. Finally, extensive experiments demonstrate the effectiveness and superiority of our method on our dental dataset.

摘要

三维牙齿点云的自动准确牙齿分割在计算机辅助牙科中起着关键作用。现有的基于Transformer的方法侧重于聚合局部特征,但由于内存限制和高计算成本,未能直接对全局上下文进行建模。在本文中,我们提出了一种新颖的基于Transformer的三维牙齿分割网络,称为PointRegion,它可以低成本处理整个点云。遵循一种将点云解释为可学习区域镶嵌的语义分割新模型,我们首先设计了一个RegionPartition模块,将三维点云分割成一定数量的区域,并以有效的方式将这些区域投影为嵌入。然后,在所有区域嵌入上应用基于偏移注意力的RegionEncoder模块,以对区域之间的全局上下文进行建模,并预测每个区域的类别对数。考虑到三维点云数据的不规则性和无序性,提出了一种新颖的机制来建立点到区域的关联,以取代传统的卷积操作。该机制作为点和区域之间的媒介,从点和区域特征之间的相似性中自动学习每个点属于其相邻区域的概率,实现点级分割的目标。由于区域数量远少于点的数量,我们提出的PointRegion模型可以利用基于全局的Transformer在大规模点云上的能力,同时具有低计算成本和内存消耗。最后,大量实验证明了我们的方法在我们的牙齿数据集上的有效性和优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e9/11574114/62e904e4380a/41598_2024_79485_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验