Space Research & Planetary Sciences (WP), Physics Institute, University of Bern, Bern, Switzerland.
Department of Earth Sciences, Uppsala University, Uppsala, Sweden.
Astrobiology. 2022 Apr;22(4):369-386. doi: 10.1089/ast.2019.2201. Epub 2022 Feb 23.
The investigation of chemical composition on planetary bodies without significant sample processing is of importance for nearly every mission aimed at robotic exploration. Moreover, it is a necessary tool to achieve the longstanding goal of finding evidence of life beyond Earth, for example, possibly preserved microbial remains within martian sediments. Our Laser Ablation Ionization Mass Spectrometer (LIMS) is a compact time-of-flight mass spectrometer intended to investigate the elemental, isotope, and molecular composition of a wide range of solid samples, including e.g., low bulk density organic remains in microfossils. Here, we present an overview of the instrument and collected chemical spectrometric data at the micrometer level from a Precambrian chert sample (1.88 Ga Gunflint Formation, Ontario, Canada), which is considered to be a martian analogue. Data were collected from two distinct zones-a silicified host area and a carbon-bearing microfossil assemblage zone. We performed these measurements using an ultrafast pulsed laser system (pulse width of ∼180 fs) with multiple wavelengths (infrared [IR]-775 nm, ultraviolet [UV]-387 nm, UV-258 nm) and using a pulsed high voltage on the mass spectrometer to reveal small organic signals. We investigated (1) the chemical composition of the sample and (2) the different laser wavelengths' performance to provide chemical depth profiles in silicified media. Our key findings are as follows: (1) microfossils from the Gunflint chert reveal a distinct chemical composition compared with the host mineralogy (we report the identification of 24 elements in the microfossils); (2) detection of the pristine composition of microfossils and co-occurring fine chemistry (rare earth elements) requires utilization of the depth profiling measurement protocol; and (3) our results show that, for analysis of heterogeneous material from siliciclastic deposits, siliceous sinters, and cherts, the most suitable wavelength for laser ablation/Ionization is UV-258 nm.
对没有大量样本处理的行星体的化学成分进行调查,对于几乎每一个旨在进行机器人探索的任务都非常重要。此外,这也是实现寻找地球以外生命证据的长期目标的必要工具,例如,在火星沉积物中可能保存的微生物遗骸。我们的激光烧蚀电离飞行时间质谱仪(LIMS)是一种紧凑型飞行时间质谱仪,旨在研究各种固体样品的元素、同位素和分子组成,例如微化石中低体密度的有机残留物。在这里,我们介绍了该仪器的概述,并从一块前寒武纪燧石样本(18.8Ga 年的安大略省古弗林特组)中收集了微米级的化学光谱数据,该样本被认为是火星的类似物。数据是从两个不同的区域收集的,一个是硅化的母体区域,另一个是含碳的微化石组合区域。我们使用超快速脉冲激光系统(脉冲宽度约为 180fs)和多个波长(红外[IR]-775nm、紫外[UV]-387nm、UV-258nm)进行了这些测量,并在质谱仪上施加脉冲高压以揭示小分子的信号。我们研究了:(1)样品的化学组成,(2)不同激光波长的性能,以提供硅化介质中的化学深度分布。我们的主要发现如下:(1)古弗林特燧石中的微化石与母体矿物学相比具有明显不同的化学成分(我们报告了在微化石中鉴定出 24 种元素);(2)要检测微化石和共存的精细化学物质的原始组成,需要利用深度分布测量协议;(3)我们的结果表明,对于分析硅质碎屑沉积物、硅质烧结物和燧石等不均匀物质,最适合激光烧蚀/电离的波长是 UV-258nm。