PIT Bioinformatics Group, Eötvös University, 1117, Budapest, Hungary.
Uratim Ltd., 1118, Budapest, Hungary.
Sci Rep. 2022 Feb 23;12(1):3102. doi: 10.1038/s41598-022-06697-4.
Gaussian blurring is a well-established method for image data augmentation: it may generate a large set of images from a small set of pictures for training and testing purposes for Artificial Intelligence (AI) applications. When we apply AI for non-imagelike biological data, hardly any related method exists. Here we introduce the "Newtonian blurring" in human braingraph (or connectome) augmentation: Started from a dataset of 1053 subjects from the public release of the Human Connectome Project, we first repeat a probabilistic weighted braingraph construction algorithm 10 times for describing the connections of distinct cerebral areas, then for every possible set of 7 of these graphs, delete the lower and upper extremes, and average the remaining 7 - 2 = 5 edge-weights for the data of each subject. This way we augment the 1053 graph-set to 120 [Formula: see text] 1053 = 126,360 graphs. In augmentation techniques, it is an important requirement that no artificial additions should be introduced into the dataset. Gaussian blurring and also this Newtonian blurring satisfy this goal. The resulting dataset of 126,360 graphs, each in 5 resolutions (i.e., 631,800 graphs in total), is freely available at the site https://braingraph.org/cms/download-pit-group-connectomes/ . Augmenting with Newtonian blurring may also be applicable in other non-image-related fields, where probabilistic processing and data averaging are implemented.
它可以从小数据集生成大量图像,用于人工智能 (AI) 应用的训练和测试。当我们将 AI 应用于非图像生物数据时,几乎没有相关的方法。在这里,我们介绍人类脑图谱 (或连接组) 增强中的“牛顿模糊”:从人类连接组计划公开发布的 1053 个主体的数据集开始,我们首先重复使用概率加权脑图谱构建算法 10 次,以描述不同大脑区域的连接,然后对于这些图谱的每一组 7 个图谱,删除下限和上限,并对每个主体的数据平均其余 7-2=5 个边缘权重。这样,我们将 1053 个图谱集增强到 120 [公式:见正文]1053=126360 个图谱。在增强技术中,一个重要的要求是数据集不应引入任何人为添加物。高斯模糊和牛顿模糊都满足这一目标。在该网站 https://braingraph.org/cms/download-pit-group-connectomes/ 上可以免费获得包含 126360 个图谱的数据集,每个图谱有 5 个分辨率(即总共 631800 个图谱)。牛顿模糊增强也可能适用于其他非图像相关领域,其中实现了概率处理和数据平均。