Suppr超能文献

为全球南方地区的医疗保健优化以人为本的人工智能。

Optimizing human-centered AI for healthcare in the Global South.

作者信息

Okolo Chinasa T

机构信息

Department of Computer Science, Cornell University, Ithaca, NY 14853, USA.

出版信息

Patterns (N Y). 2022 Jan 3;3(2):100421. doi: 10.1016/j.patter.2021.100421. eCollection 2022 Feb 11.

Abstract

Over the past 60 years, artificial intelligence (AI) has made significant progress, but most of its benefits have failed to make a significant impact within the Global South. Current practices that have led to biased systems will prevent AI from being actualized unless significant efforts are made to change them. As technical advances in AI and an interest in solving new problems lead researchers and tech companies to develop AI applications that target the health of marginalized communities, it is crucially important to study how AI can be used to empower those on the front lines in the Global South and how these tools can be optimally designed for marginalized communities. This perspective examines the landscape of AI for healthcare in the Global South and the evaluations of such systems and provides tangible recommendations for AI practitioners and human-centered researchers to incorporate in the development of AI systems for use with marginalized populations.

摘要

在过去60年里,人工智能(AI)取得了重大进展,但其大部分益处未能在全球南方产生重大影响。导致系统存在偏差的当前做法将阻碍人工智能的实现,除非做出重大努力来改变它们。随着人工智能的技术进步以及对解决新问题的兴趣促使研究人员和科技公司开发针对边缘化社区健康的人工智能应用程序,研究如何利用人工智能增强全球南方一线人员的能力以及如何为边缘化社区优化设计这些工具至关重要。这一观点审视了全球南方医疗保健领域的人工智能格局及其系统评估,并为人工智能从业者和以人类为中心的研究人员提供切实可行的建议,以便将其纳入为边缘化人群开发人工智能系统的过程中。

相似文献

1
Optimizing human-centered AI for healthcare in the Global South.为全球南方地区的医疗保健优化以人为本的人工智能。
Patterns (N Y). 2022 Jan 3;3(2):100421. doi: 10.1016/j.patter.2021.100421. eCollection 2022 Feb 11.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验