Suppr超能文献

审视包容性:人工智能在健康与社会护理中的应用及不同人群:一项系统综述。

Examining inclusivity: the use of AI and diverse populations in health and social care: a systematic review.

作者信息

Marko John Gabriel O, Neagu Ciprian Daniel, Anand P B

机构信息

University of Bradford Facility of Engineering and Digital Technology, Bradford, UK.

University of Bradford Faculty of Management Law and Social Sciences, Bradford, UK.

出版信息

BMC Med Inform Decis Mak. 2025 Feb 5;25(1):57. doi: 10.1186/s12911-025-02884-1.

Abstract

BACKGROUND

Artificial intelligence (AI)-based systems are being rapidly integrated into the fields of health and social care. Although such systems can substantially improve the provision of care, diverse and marginalized populations are often incorrectly or insufficiently represented within these systems. This review aims to assess the influence of AI on health and social care among these populations, particularly with regard to issues related to inclusivity and regulatory concerns.

METHODS

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Six leading databases were searched, and 129 articles were selected for this review in line with predefined eligibility criteria.

RESULTS

This research revealed disparities in AI outcomes, accessibility, and representation among diverse groups due to biased data sources and a lack of representation in training datasets, which can potentially exacerbate inequalities in care delivery for marginalized communities.

CONCLUSION

AI development practices, legal frameworks, and policies must be reformulated to ensure that AI is applied in an equitable manner. A holistic approach must be used to address disparities, enforce effective regulations, safeguard privacy, promote inclusion and equity, and emphasize rigorous validation.

摘要

背景

基于人工智能(AI)的系统正在迅速融入健康和社会护理领域。尽管此类系统可大幅改善护理服务的提供,但在这些系统中,不同人群和边缘化人群往往未得到正确呈现或呈现不足。本综述旨在评估人工智能对这些人群的健康和社会护理的影响,特别是在与包容性和监管问题相关的方面。

方法

我们遵循系统评价与Meta分析的首选报告项目指南。检索了六个主要数据库,并根据预定义的纳入标准选择了129篇文章进行本综述。

结果

本研究揭示,由于数据源存在偏差以及训练数据集中缺乏代表性,不同群体在人工智能的结果、可及性和代表性方面存在差异,这可能会加剧边缘化社区在护理服务提供方面的不平等。

结论

必须重新制定人工智能开发实践、法律框架和政策,以确保以公平的方式应用人工智能。必须采用整体方法来解决差异、执行有效监管、保护隐私、促进包容和平等,并强调严格验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bf7/11796235/b581c5575fa5/12911_2025_2884_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验