Macquarie Medical School, Macquarie University, NSW, 2109, Sydney, Australia.
Computational NeuroSurgery (CNS) Lab, Macquarie University, Sydney, Australia.
Neuroradiology. 2022 Aug;64(8):1585-1592. doi: 10.1007/s00234-022-02921-0. Epub 2022 Feb 24.
To train deep learning convolutional neural network (CNN) models for classification of clinically significant Chiari malformation type I (CM1) on MRI to assist clinicians in diagnosis and decision making.
A retrospective MRI dataset of patients diagnosed with CM1 and healthy individuals with normal brain MRIs from the period January 2010 to May 2020 was used to train ResNet50 and VGG19 CNN models to automatically classify images as CM1 or normal. A total of 101 patients diagnosed with CM1 requiring surgery and 111 patients with normal brain MRIs were included (median age 30 with an interquartile range of 23-43; 81 women with CM1). Isotropic volume transformation, image cropping, skull stripping, and data augmentation were employed to optimize model accuracy. K-fold cross validation was used to calculate sensitivity, specificity, and the area under receiver operating characteristic curve (AUC) for model evaluation.
The VGG19 model with data augmentation achieved a sensitivity of 97.1% and a specificity of 97.4% with an AUC of 0.99. The ResNet50 model achieved a sensitivity of 94.0% and a specificity of 94.4% with an AUC of 0.98.
VGG19 and ResNet50 CNN models can be trained to automatically detect clinically significant CM1 on MRI with a high sensitivity and specificity. These models have the potential to be developed into clinical support tools in diagnosing CM1.
训练深度学习卷积神经网络(CNN)模型,以便对 MRI 上具有临床意义的 Chiari 畸形 I 型(CM1)进行分类,以帮助临床医生进行诊断和决策。
使用 2010 年 1 月至 2020 年 5 月期间诊断为 CM1 的患者和具有正常脑 MRI 的健康个体的回顾性 MRI 数据集来训练 ResNet50 和 VGG19 CNN 模型,以自动将图像分类为 CM1 或正常。共纳入 101 例需要手术治疗的确诊 CM1 患者和 111 例正常脑 MRI 患者(中位年龄 30 岁,四分位间距为 23-43 岁;81 例 CM1 患者为女性)。采用各向同性体积变换、图像裁剪、颅骨剥离和数据增强来优化模型准确性。使用 K 折交叉验证来计算模型评估的敏感性、特异性和接受者操作特征曲线(ROC)下面积(AUC)。
使用数据增强的 VGG19 模型的敏感性为 97.1%,特异性为 97.4%,AUC 为 0.99。ResNet50 模型的敏感性为 94.0%,特异性为 94.4%,AUC 为 0.98。
可以训练 VGG19 和 ResNet50 CNN 模型来自动检测 MRI 上具有临床意义的 CM1,具有较高的敏感性和特异性。这些模型有可能开发成诊断 CM1 的临床支持工具。