Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA.
Department of Computer Science, Stanford University, Stanford, CA.
Int Forum Allergy Rhinol. 2022 Aug;12(8):1025-1033. doi: 10.1002/alr.22958. Epub 2022 Jan 18.
Distinguishing benign inverted papilloma (IP) tumors from those that have undergone malignant transformation to squamous cell carcinoma (IP-SCC) is important but challenging to do preoperatively. Magnetic resonance imaging (MRI) can help differentiate these 2 entities, but no established method exists that can automatically synthesize all potentially relevant MRI image features to distinguish IP and IP-SCC. We explored a deep learning approach, using 3-dimensional convolutional neural networks (CNNs), to address this challenge.
Retrospective chart reviews were performed at 2 institutions to create a data set of preoperative MRIs with corresponding surgical pathology reports. The MRI data set included all available MRI sequences in the axial plane, which were used to train, validate, and test 3 CNN models. Saliency maps were generated to visualize areas of MRIs with greatest influence on predictions.
A total of 90 patients with IP (n = 64) or IP-SCC (n = 26) tumors were identified, with a total of 446 images of distinct MRI sequences for IP (n = 329) or IP-SCC (n = 117). The best CNN model, All-Net, demonstrated a sensitivity of 66.7%, specificity of 81.5%, overall accuracy of 77.9%, and receiver-operating characteristic area under the curve of 0.80 (95% confidence interval, 0.682-0.898) for test classification performance. The other 2 models, Small-All-Net and Elastic-All-Net, showed similar performance levels.
A deep learning approach with 3-dimensional CNNs can distinguish IP and IP-SCC with moderate test classification performance. Although CNNs demonstrate promise to enhance the prediction of IP-SCC using MRIs, more data are needed before they can reach the predictive value already established by human MRI evaluation.
术前区分良性内翻性乳头状瘤(IP)肿瘤和发生鳞状细胞癌(IP-SCC)恶性转化的肿瘤很重要,但具有挑战性。磁共振成像(MRI)有助于区分这两种实体,但目前还没有一种既定的方法可以自动综合所有潜在的相关 MRI 图像特征来区分 IP 和 IP-SCC。我们探索了一种深度学习方法,使用三维卷积神经网络(CNN)来解决这一挑战。
在 2 家机构进行了回顾性图表审查,以创建一个包含术前 MRI 和相应手术病理报告的数据集。MRI 数据集包括轴位的所有可用 MRI 序列,这些序列用于训练、验证和测试 3 个 CNN 模型。生成显著性图以可视化对预测影响最大的 MRI 区域。
共确定了 90 例 IP(n=64)或 IP-SCC(n=26)肿瘤患者,共有 446 张不同 MRI 序列的图像用于 IP(n=329)或 IP-SCC(n=117)。最佳的 CNN 模型 All-Net 的测试分类性能的灵敏度为 66.7%,特异性为 81.5%,总准确率为 77.9%,ROC 曲线下面积为 0.80(95%置信区间,0.682-0.898)。另外 2 个模型 Small-All-Net 和 Elastic-All-Net 表现出类似的性能水平。
使用三维 CNN 的深度学习方法可以区分 IP 和 IP-SCC,测试分类性能中等。尽管 CNN 具有增强使用 MRI 预测 IP-SCC 的潜力,但在达到人类 MRI 评估已经建立的预测值之前,还需要更多的数据。