Singh Amit V, Pertsch Thomas
Opt Express. 2022 Jan 3;30(1):484-495. doi: 10.1364/OE.439764.
We investigate numerically the evolution of a particular type of non-diffracting pulsed plasmonic beam called Airy plasmon pulses. A suitable diffraction grating is obtained by optimizing a grating (e.g., [Phys. Rev. Lett.107, 116802 (2011)10.1103/PhysRevLett.107.116802]) for maximum generation bandwidth and efficiency to excite ultrashort Airy plasmon pulses. The optimization process is based on Airy and non-Airy plasmons contributions from the diffraction grating. The time-averaged Airy plasmon pulse generated from the grating shows a bent trajectory and quasi non-diffracting properties similar to CW excited Airy plasmons. A design-parameter-dependent geometrical model is developed to explain the spatio-temporal dynamics of the Airy plasmon pulses, which predicts the pulse broadening in Airy plasmon pulses due to non-Airy plasmons emerging from the grating. This model provides a parametric design control for the potential engineering of temporally focused 2D non-diffracting pulsed plasmonic beams.
我们对一种特殊类型的非衍射脉冲等离子体光束——艾里等离子体脉冲的演化进行了数值研究。通过优化光栅(例如,[《物理评论快报》107, 116802 (2011)10.1103/PhysRevLett.107.116802])以获得最大的产生带宽和效率来激发超短艾里等离子体脉冲,从而得到合适的衍射光栅。优化过程基于衍射光栅中艾里等离子体和非艾里等离子体的贡献。从光栅产生的时间平均艾里等离子体脉冲呈现出弯曲的轨迹和类似于连续波激发的艾里等离子体的准非衍射特性。我们建立了一个依赖于设计参数的几何模型来解释艾里等离子体脉冲的时空动力学,该模型预测了由于从光栅中出现的非艾里等离子体导致的艾里等离子体脉冲展宽。该模型为时间聚焦的二维非衍射脉冲等离子体光束的潜在工程设计提供了参数化设计控制。