Suppr超能文献

响应于蓝细菌集胞藻 PCC 7942 中碳状态改变的 Rubisco 调节。

Rubisco regulation in response to altered carbon status in the cyanobacterium Synechococcus elongatus PCC 7942.

机构信息

MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.

Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA.

出版信息

Plant Physiol. 2022 Jun 1;189(2):874-888. doi: 10.1093/plphys/kiac065.

Abstract

Photosynthetic organisms possess a variety of mechanisms to achieve balance between absorbed light (source) and the capacity to metabolically utilize or dissipate this energy (sink). While regulatory processes that detect changes in metabolic status/balance are relatively well studied in plants, analogous pathways remain poorly characterized in photosynthetic microbes. Here, we explored systemic changes that result from alterations in carbon availability in the model cyanobacterium Synechococcus elongatus PCC 7942 by taking advantage of an engineered strain where influx/efflux of a central carbon metabolite, sucrose, can be regulated experimentally. We observed that induction of a high-flux sucrose export pathway leads to depletion of internal carbon storage pools (glycogen) and concurrent increases in estimates of photosynthetic activity. Further, a proteome-wide analysis and fluorescence reporter-based analysis revealed that upregulated factors following the activation of the metabolic sink are concentrated on ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) and auxiliary modules involved in Rubisco maturation. Carboxysome number and Rubisco activity also increased following engagement of sucrose secretion. Conversely, reversing the flux of sucrose by feeding exogenous sucrose through the heterologous transporter resulted in increased glycogen pools, decreased Rubisco abundance, and carboxysome reorganization. Our data suggest that Rubisco activity and organization are key variables connected to regulatory pathways involved in metabolic balancing in cyanobacteria.

摘要

光合生物拥有多种机制来实现吸收的光(源)与代谢利用或耗散这种能量(汇)的能力之间的平衡。虽然在植物中,检测代谢状态/平衡变化的调节过程已经得到了相对较好的研究,但在光合微生物中,类似的途径仍然知之甚少。在这里,我们通过利用一种经过工程改造的菌株来探索模型蓝藻 Synechococcus elongatus PCC 7942 中碳可用性变化所导致的系统变化,在该菌株中,中央碳代谢物蔗糖的流入/流出可以通过实验进行调节。我们观察到,诱导高通量蔗糖外排途径会导致内部碳储存池(糖原)耗尽,并同时增加光合作用活性的估计值。此外,基于全蛋白质组分析和荧光报告基因分析的结果表明,在代谢汇被激活后上调的因子集中在核酮糖-1,5-二磷酸羧化酶-加氧酶(Rubisco)和参与 Rubisco 成熟的辅助模块上。在蔗糖分泌作用下,羧化体数量和 Rubisco 活性也增加。相反,通过异源转运蛋白摄取外源蔗糖来逆转蔗糖的通量,会导致糖原池增加、Rubisco 丰度降低和羧化体重组。我们的数据表明,Rubisco 活性和组织是与蓝藻代谢平衡相关的调节途径的关键变量。

相似文献

8
Towards engineering carboxysomes into C3 plants.致力于将羧酶体工程化引入C3植物。
Plant J. 2016 Jul;87(1):38-50. doi: 10.1111/tpj.13139. Epub 2016 Jun 20.

引用本文的文献

9
Cyanobacteria as cell factories for the photosynthetic production of sucrose.蓝细菌作为用于光合生产蔗糖的细胞工厂。
Front Microbiol. 2023 Feb 14;14:1126032. doi: 10.3389/fmicb.2023.1126032. eCollection 2023.

本文引用的文献

3
Orthogonal Degron System for Controlled Protein Degradation in Cyanobacteria.用于蓝藻中蛋白质可控降解的正交降解子系统
ACS Synth Biol. 2021 Jul 16;10(7):1667-1681. doi: 10.1021/acssynbio.1c00035. Epub 2021 Jul 7.
5
New discoveries expand possibilities for carboxysome engineering.新发现拓展了羧化体工程的可能性。
Curr Opin Microbiol. 2021 Jun;61:58-66. doi: 10.1016/j.mib.2021.03.002. Epub 2021 Mar 30.
8
Life cycle of a cyanobacterial carboxysome.蓝藻羧化体的生命周期。
Sci Adv. 2020 May 6;6(19):eaba1269. doi: 10.1126/sciadv.aba1269. eCollection 2020 May.
10
Revisiting cyanobacterial state transitions.重新审视蓝藻的状态转变。
Photochem Photobiol Sci. 2020 May 1;19(5):585-603. doi: 10.1039/c9pp00451c. Epub 2020 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验